
81

C A P Í T U L O

3DESENVOLVIMENTO ÁGIL

O que é? A engenharia de software
ágil combina filosofia com um conjunto
de princı́pios de desenvolvimento. A filo-
sofia defende a satisfação do cliente e a

entrega de incremental prévio; equipes de projeto
pequenas e altamente motivadas; métodos infor-
mais; artefato de engenharia de software mı́nimos
e, acima de tudo, simplicidade no desenvolvimen-
to geral. Os princı́pios de desenvolvimento priori-
zam a entrega mais que análise e projeto (embora
essas atividades não sejam desencorajadas); tam-
bém priorizam a comunicação ativa e contı́nua
entre desenvolvedores e clientes.

Quem realiza? Os engenheiros de software e
outros envolvidos no projeto (gerentes, clientes,
usuários finais) trabalham conjuntamente em uma
equipe ágil — uma equipe que se auto-organiza
e que controla seu próprio destino. Uma equipe
ágil acelera a comunicação e a colaboração entre
todos os participantes (que estão a seu serviço).

Por que é importante? O moderno ambiente dos
sistemas e dos produtos da área é acelerado e
está em constante mudança. A engenharia de soft-
ware ágil constitui uma razoável alternativa para
a engenharia convencional voltada para certas

classes de software e para certos tipos de projetos,
e tem se mostrado capaz de entregar sistemas
corretos rapidamente.

Quais são as etapas envolvidas? O desenvol-
vimento ágil poderia ser mais bem denominado
“engenharia de software flexı́vel”. As atividades
metodológicas básicas permanecem: comunica-
ção, planejamento, modelagem, construção e
emprego. Entretanto, estas se transformam em
um conjunto de tarefas mı́nimas que impulsiona a
equipe para o desenvolvimento e para a entrega
(pode-se levantar a questão de que isso é feito em
detrimento da análise do problema e do projeto
de soluções).

Qual é o artefato? Tanto o cliente como o enge-
nheiro têm o mesmo parecer: o único artefato
realmente importante consiste em um “incremento
de software” operacional que seja entregue, ade-
quadamente, na data combinada.

Como garantir que o trabalho foi realizado
corretamente? Se a equipe ágil concordar
que o processo funciona e essa equipe produz
incrementos de software passı́veis de entrega e
que satisfaçam o cliente, então, o trabalho está
correto.

PANORAMA

C O N C E I T O S -
- C H A V E

agilidade82
Crystal97
desenvolvimento
de software
adaptativo94
desenvolvimento de
software enxuto
(LSD)99
DSDM96
Extreme Programming
 – XP (programação
extrema)87
FDD98
histórias89
processo ágil.85
drocesso unificado
ágil101
processo XP89
programação em
duplas88

Em 2001, Kent Beck e outros dezesseis renomados desenvolvedores, autores e con-
sultores da área de software [Bec01a] (batizados de “Agile Alliance”- “Aliança dos
Ágeis”) assinaram o “Manifesto para o Desenvolvimento Ágil de Software” (“Mani-

festo for Agile Software Development”), que se inicia da seguinte maneira:

Desenvolvendo e ajudando outros a desenvolver software, estamos desvendando formas melho-
res de desenvolvimento. Por meio deste trabalho passamos a valorizar:

 Indivíduos e interações acima de processos e ferramentas

 Software operacional acima de documentação completa

 Colaboração dos clientes acima de negociação contratual

 Respostas a mudanças acima de seguir um plano

Ou seja, embora haja valor nos itens à direita, valorizaremos os da esquerda mais ainda.

Normalmente, um manifesto é associado a um movimento polı́tico emergente: atacan-
do a velha guarda e sugerindo uma mudança revolucionária (espera-se que para melhor).
De certa forma, é exatamente do que trata o desenvolvimento ágil.

Embora as ideias básicas que norteiam o desenvolvimento ágil tenham estado conosco
por muitos anos, só há menos de duas décadas que se consolidaram como um “movimento”.

Grupo 01

82 PARTE 1 O PROCESSO DE SOFTWARE

retrabalho 87
scrum 95
velocidade
de projeto. 86
XP Industrial. . . 91

Em essência, métodos ágeis1 se desenvolveram em um esforço para sanar fraquezas reais e
perceptı́veis da engenharia de software convencional. O desenvolvimento ágil oferece benefı́cios
importantes, no entanto, não é indicado para todos os projetos, produtos, pessoas e situações.
Também não é a antı́tese da prática de engenharia de software consistente e pode ser aplicado
como uma filosofia geral para todos os trabalhos de software.

Na economia moderna é frequentemente difı́cil ou impossı́vel prever como um sistema com-
putacional (por exemplo, uma aplicação baseada na Web) irá evoluir com o tempo. As condições
de mercado mudam rapidamente, as necessidades dos usuários finais se alteram e novas ame-
aças competitivas emergem sem aviso. Em muitas situações, não se conseguirá definir com-
pletamente requisitos antes que se inicie o projeto. É preciso ser ágil o suficiente para dar uma
resposta ao ambiente de fluido negócios.

Fluidez implica mudanças, e mudanças são caras. Particularmente, se forem sem controle e
mal gerenciadas. Uma das caracterı́sticas mais convincentes da abordagem ágil é sua habilidade
de reduzir os custos da mudança ao longo de todo o processo de software.

Isso significa que o reconhecimento dos desafios apresentados pela moderna realidade faz
com que se descartem valiosos princı́pios da engenharia de software, conceitos, métodos e
ferramentas? Absolutamente não! Como todas as disciplinas de engenharia, a engenharia de
software continua a evoluir, podendo ser adaptada facilmente aos desafios apresentados pela
demanda por agilidade.

Em um texto que nos leva à reflexão sobre desenvolvimento de software ágil, Alistair Cock-
burn [Coc02] argumenta que o modelo de processo prescritivo, apresentado no Capı́tulo 2, tem
uma falha essencial: esquece das fragilidades das pessoas que desenvolvem o software. Os en-
genheiros de software não são robôs. Eles apresentam grande variação nos estilos de trabalho;
diferenças significativas no nı́vel de habilidade, criatividade, organização, consistência e espon-
taneidade. Alguns se comunicam bem na forma escrita, outros não. Cockburn afirma que os
modelos de processos podem “lidar com as fraquezas comuns das pessoas com disciplina e/ou
tolerância” e que a maioria dos modelos de processos prescritivos opta por disciplina. Segundo
ele: “Como a consistência nas ações é uma fraqueza humana, as metodologias com disciplina
elevada são frágeis”.

Para que funcionem, os modelos de processos devem fornecer um mecanismo realista que
estimule a disciplina necessária ou, então, devem ter caracterı́sticas que apresentem “tolerân-
cia” com as pessoas que realizam trabalhos de engenharia de software. Invariavelmente, prá-
ticas tolerantes são mais facilmente adotadas e sustentadas pelas pessoas envolvidas, porém
(como o próprio Cockburn admite) podem ser menos produtivas. Como a maioria das coisas na
vida, deve-se considerar os prós e os contras.

O QUE É AGILIDADE?

No contexto da engenharia de software, o que é agilidade? Ivar Jacobson [Jac02a] apresenta
uma útil discussão:

Atualmente, agilidade tornou-se a palavra da moda quando se descreve um moderno processo de soft-
ware. Todo mundo é ágil. Uma equipe ágil é aquela rápida e capaz de responder apropriadamente a mu-
danças. Mudanças têm muito a ver com desenvolvimento de software. Mudanças no software que está
sendo criado, mudanças nos membros da equipe, mudanças devido a novas tecnologias, mudanças de
todos os tipos que poderão ter um impacto no produto que está em construção ou no projeto que cria
o produto. Suporte para mudanças deve ser incorporado em tudo o que fazemos em software, algo
que abraçamos porque é o coração e a alma do software. Uma equipe ágil reconhece que o software é
desenvolvido por indivı́duos trabalhando em equipes e que as habilidades dessas pessoas, suas capaci-
dades em colaborar estão no cerne do sucesso do projeto.

1 Os métodos ágeis são algumas vezes conhecidos como métodos light ou métodos enxutos (lean methods).

“Agilidade: 1,
todo o resto: 0.”

Tom DeMarco

3.1

Grupo 02

Grupo 03

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 83

Segundo Jacobson, a penetração da mudança é o principal condutor para a agilidade. Os
engenheiros de software devem ser rápidos em seus passos caso queiram assimilar as rápidas
mudanças que Jacobson descreve.

Porém, agilidade consiste em algo mais que uma resposta à mudança, abrangendo a filosofia
proposta no manifesto citado no inı́cio deste capı́tulo. Ela incentiva a estruturação e as atitudes
em equipe que tornam a comunicação mais fácil (entre membros da equipe, entre o pessoal
ligado à tecnologia e o pessoal da área comercial, entre os engenheiros de software e seus ge-
rentes). Enfatiza a entrega rápida do software operacional e diminui a importância dos artefatos
intermediários (nem sempre um bom negócio); assume o cliente como parte da equipe de de-
senvolvimento e trabalha para eliminar a atitude de “nós e eles”, que continua a invadir muitos
projetos de software; reconhece que o planejamento em um mundo incerto tem seus limites e
que o plano (roteiro) de projeto deve ser flexı́vel.

A agilidade pode ser aplicada a qualquer processo de software. Entretanto, para obtê-la, é es-
sencial que seja projetado para que a equipe possa adaptar e alinhar (racionalizar) tarefas; possa
conduzir o planejamento compreendendo a fluidez de uma abordagem do desenvolvimento ágil;
possa eliminar tudo, exceto os artefatos essenciais, conservando-os enxutos; e enfatize a estra-
tégia de entrega incremental, conseguindo entregar ao cliente, o mais rapidamente possı́vel, o
software operacional para o tipo de produto e ambiente operacional.

AGILIDADE E O CUSTO DA S MUDANÇA S

A sabedoria convencional em desenvolvimento de software (baseada em décadas de expe-
riência) afirma que os custos de mudanças aumentam de forma não linear conforme o projeto
avança (Figura 3.1, curva em preto contı́nuo). É relativamente fácil assimilar uma mudança
quando uma equipe de software está juntando requisitos (no inı́cio de um projeto). Pode-se
ter de alterar um detalhamento do uso, ampliar uma lista de funções ou editar uma especifi-
cação por escrito. Os custos de tal trabalho são mı́nimos e o tempo demandado não afetará
negativamente o resultado do projeto. Mas se adiantarmos alguns meses, o que aconteceria? A
equipe está em meio aos testes de validação (que ocorre relativamente no final do projeto) e um
importante interessado está requisitando uma mudança funcional de vulto. A mudança requer
uma alteração no projeto da arquitetura do software, o projeto e desenvolvimento de três novos
componentes, modificações em outros cinco componentes, projeto de novos testes, e assim por
diante. Os custos crescem rapidamente e não serão triviais o tempo e custos necessários para
assegurar que a mudança seja feita sem efeitos colaterais inesperados.

Não cometa o erro
de assumir que a
agilidade lhe dará
licença para abreviar
soluções. Processo
é um requisito e
disciplina é essencial.

AVISO

3.2

“A agilidade é
dinâmica, de
conteúdo especı́fico,
abrange mudanças
agressivas e
é orientada ao
crescimento.”

Steven
Goldman et al.

FIGURA 3.1

Custos de
alterações como
uma função do
tempo em
desenvolvimento

Custo de alterações
usando-se processos de
software convencionais

Custo de alterações
usando-se processos ágeis

Custo ideal de alterações
usando-se processo ágil

Progresso do cronograma de desenvolvimento

Cu
st

o
d
e

d
es

en
vo

lv
im

en
to

Grupo 04

84 PARTE 1 O PROCESSO DE SOFTWARE

Os defensores da agilidade (por exemplo, [Bec00], [Amb04]) argumentam que um pro-
cesso ágil bem elaborado “achata” o custo da curva de mudança (Figura 3.1, curva em linha
verde), permitindo que uma equipe de software assimile as alterações, realizadas posterior-
mente em um projeto de software, sem um impacto significativo nos custos ou no tempo. Já
foi mencionado que o processo ágil envolve entregas incrementais. O custo das mudanças
é atenuado quando a entrega incremental é associada a outras práticas ágeis, como tes-
tes contı́nuos de unidades e programação por pares, (discutida adiante neste capı́tulo). Há
evidências [CocO1a] que sugerem que se pode alcançar redução significativa nos custos
de alterações, embora haja um debate contı́nuo sobre qual o nı́vel em que a curva de cus-
tos torna-se “achatada”.

O QUE É PROCESSO ÁGIL?

Qualquer processo ágil de software é caracterizado de uma forma que se relacione a uma
série de preceitos-chave [Fow02] acerca da maioria dos projetos de software:

1. É difı́cil afirmar antecipadamente quais requisitos de software irão persistir e quais sofrerão
alterações. É igualmente difı́cil prever de que maneira as prioridades do cliente sofrerão al-
terações conforme o projeto avança.

2. Para muitos tipos de software, o projeto e a construção são “interconduzidos”. Ou seja, am-
bas as atividades devem ser realizadas em sequência (uma atrás da outra), para que os mo-
delos de projeto sejam provados conforme sejam criados. É difı́cil prever quanto de trabalho
de projeto será necessário antes que a sua construção (desenvolvimento) seja implementada
para avaliar o projeto.

3. Análise, projeto, construção (desenvolvimento) e testes não são tão previsı́veis (do ponto de
vista de planejamento) quanto gostarı́amos que fosse.

Dados esses três preceitos, surge uma importante questão: Como criar um processo capaz
de administrar a imprevisibilidade? A resposta, conforme já observado, consiste na adaptabi-
lidade de processo (para alterar rapidamente o projeto e as condições técnicas). Portanto, um
processo ágil deve ser adaptável.

Mas adaptação contı́nua sem progressos que levem em frente o desenvolvimento realiza
muito pouco. Um processo ágil de software deve adaptar incrementalmente. Para conseguir uma
adaptação incremental, a equipe ágil precisa de feedback do cliente (de modo que as adaptações
apropriadas possam ser feitas). Um efetivo catalisador para feedback de cliente é um protótipo
operacional ou parte de um sistema operacional. Dessa forma, deve se instituir uma estratégia
de desenvolvimento incremental. Os incrementos de software (protótipos executáveis ou partes
de um sistema operacional) devem ser entregues em curtos perı́odos de tempo, de modo que
as adaptações acompanhem o mesmo ritmo das mudanças (imprevisibilidade). Essa abordagem
iterativa capacita o cliente a avaliar o incremento de software regularmente, fornecer o feedback
necessário para a equipe de software e influenciar as adaptações de processo feitas para incluir
adequadamente o feedback.

3.3.1 Princı́pios da agilidade

A Agile Alliance (veja [Agi03], [Fow01]) estabelece 12 princı́pios de agilidade para quem qui-
ser ter agilidade:

 1. A maior prioridade é satisfazer o cliente por meio de entrega adiantada e contı́nua de soft-
ware valioso.

 2. Acolha bem os pedidos de alterações, mesmo atrasados no desenvolvimento. Os proces-
sos ágeis se aproveitam das mudanças como uma vantagem competitiva na relação com o
cliente.

3.3

WebRef

Uma vasta coleção
de artigos sobre
processo ágil pode
ser encontrada em
www.aanpo.org/
articles/index.

Um processo ágil reduz
o custo das alterações
porque o software é
entregue (liberado) de
forma incremental e as
alterações podem ser
mais bem controladas
dentro de incrementais.

Embora processos
ágeis considerem as
alterações, examinar
as razões para tais
mudanças ainda
continua sendo
importante.

Grupo 05

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 85

 3. Entregue software em funcionamento frequentemente, de algumas semanas para alguns
meses, dando preferência a intervalos mais curtos.

 4. O pessoal comercial e os desenvolvedores devem trabalhar em conjunto diariamente ao
longo de todo o projeto.

 5. Construa projetos em torno de indivı́duos motivados. Dê a eles o ambiente e apoio neces-
sários e confie neles para ter o trabalho feito.

 6. O método mais eficiente e efetivo de transmitir informações para e dentro de uma equipe
de desenvolvimento é uma conversa aberta, de forma presencial

 7. Software em funcionamento é a principal medida de progresso.

 8. Os processos ágeis promovem desenvolvimento sustentável. Os proponentes, desenvolvedo-
res e usuários devem estar capacitados para manter um ritmo constante indefinidamente.

 9. Atenção contı́nua para com a excelência técnica e para com bons projetos aumenta a agi-
lidade.

10. Simplicidade — a arte de maximizar o volume de trabalho não efetuado — é essencial.

11. As melhores arquiteturas, requisitos e projetos emergem de equipes que se auto-organizam.

12. A intervalos regulares, a equipe se avalia para ver como tornar-se mais eficiente, então
sintoniza e ajusta seu comportamento de acordo.

Nem todo modelo de processo ágil aplica esses 12 princı́pios atribuindo-lhes pesos iguais, e
alguns modelos preferem ignorar (ou pelo menos relevam) a importância de um ou mais desses
princı́pios. Entretanto, os princı́pios definem um espírito ágil mantido em cada um dos modelos
de processo apresentados neste capı́tulo.

3.3.2 A polı́tica do desenvolvimento ágil

Há debates consideráveis (algumas vezes acirrados) sobre os benefı́cios e a aplicabilidade
do desenvolvimento de software ágil em contraposição a processos de engenharia de software
mais convencionais. Jim Highsmith [Hig02a] (em tom jocoso) estabelece extremos ao caracte-
rizar o sentimento do grupo pró-agilidade (“os agilistas”). “Os metodologistas tradicionais são
um bando de ‘pés na lama’ que preferem produzir documentação sem falhas em vez de um
sistema que funcione e atenda às necessidades do negócio.” Em um contraponto, ele apresenta
(mais uma vez, em tom jocoso) a posição do grupo da engenharia de software tradicional: “Os
metodologistas de pouco peso, quer dizer, os metodologistas ‘ágeis’ são um bando de hackers
pretensiosos que vão acabar tendo uma grande surpresa ao tentarem transformar seus brinque-
dinhos em software de porte empresarial”.

Como toda argumentação sobre tecnologia de software, o debate sobre metodologia corre o
risco de descambar para uma guerra santa. Se for deflagrada uma guerra, a racionalidade desa-
parece e crenças, em vez de fatos, orientarão a tomada de decisão.

Ninguém é contra a agilidade. A verdadeira questão é: Qual a melhor maneira de atingi-
-la? Igualmente importante, como desenvolver software que atenda às necessidades atuais dos
clientes e que apresente caracterı́sticas de qualidade que permitirão que seja estendido e am-
pliado para responder às necessidades dos clientes no longo prazo?

Não há respostas absolutas para nenhuma dessas questões. Mesmo na própria escola ágil, exis-
tem vários modelos de processos propostos (Seção 3.4), cada um com uma abordagem sutilmente
diferente a respeito do problema da agilidade. Em cada modelo existe um conjunto de “ideias” (os
agilistas relutam em chamá-las “tarefas de trabalho”) que representam um afastamento significativo
da engenharia de software tradicional. E, ainda assim, muitos conceitos ágeis são apenas adapta-
ções de bons conceitos da engenharia de software. Conclusão: pode-se ganhar muito considerando
o que há de melhor nas duas escolas e praticamente nada denegrindo uma ou outra abordagem.

Caso se interesse mais, veja [Hig01], [Hig02a] e [DeM02], em que é apresentado um sumário
interessante a respeito de outras questões técnicas e polı́ticas importantes.

Software ativo é
importante, mas não
se deve esquecer
que também deve
apresentar uma
série de atributos de
qualidade, incluindo
confiabilidade,
usabilidade e facilidade
de manutenção.

AVISO

Você não tem de
escolher entre
agilidade ou
engenharia de
software.
Em vez disso, defina
uma abordagem
de engenharia de
software que seja ágil.

AVISO

Grupo 06

86 PARTE 1 O PROCESSO DE SOFTWARE

3.3.3 Fatores humanos

Os defensores do desenvolvimento de software ágil se esmeram para enfatizar a importância
dos “fatores humanos”. Como afirmam Cockburn e Highsmith [Coc01a], “O desenvolvimento
ágil foca talentos e habilidades de indivı́duos, moldando o processo de acordo com as pessoas
e as equipes especı́ficas”. O ponto-chave nessa afirmação é que o processo se amolda às neces-
sidades das pessoas e equipes, e não o caminho inverso.2

Se os membros da equipe de software devem orientar as caracterı́sticas do processo que é
aplicado para construir software, deve existir um certo número de traços-chave entre as pessoas
de uma equipe ágil e a equipe em si:

Competência. No contexto do desenvolvimento ágil (assim como no da engenharia de
software), a “competência” abrange talento inato, habilidades especı́ficas relacionadas a
software e conhecimento generalizado do processo que a equipe escolheu para aplicar. Ha-
bilidade e conhecimento de processo podem e devem ser ensinados para todas as pessoas
que sejam membros de uma equipe ágil.

Foco comum. Embora os membros de uma equipe ágil possam realizar diferentes tarefas e
tragam diferentes habilidades para o projeto, todos devem estar focados em um único objetivo
— entregar um incremento de software funcionando ao cliente, dentro do prazo prometido.
Para alcançar essa meta, a equipe também irá focar em adaptações contı́nuas (pequenas e
grandes) que farão com que o processo se ajuste às necessidades da equipe.

Colaboração. Engenharia de software (independentemente do processo) trata de avalia-
ção, análise e uso de informações comunicadas à equipe de software; criar informações que
ajudarão todos os envolvidos a compreender o trabalho da equipe e a construir informações
(software para computadores e bancos de dados relevantes) que forneçam valor de negócio
para o cliente. Para realizar essas tarefas, os membros da equipe devem colaborar — entre si
e com todos os demais envolvidos.

Habilidade na tomada de decisão. Qualquer boa equipe de software (até mesmo as
equipes ágeis) deve ter liberdade para controlar seu próprio destino. Isso implica que seja
dada autonomia à equipe — autoridade na tomada de decisão, tanto em assuntos técnicos
como de projeto.

Habilidade de solução de problemas confusos. Os gerentes de software devem re-
conhecer que a equipe ágil terá de lidar continuamente com a ambiguidade e que será con-
tinuamente atingida por mudanças. Em alguns casos, a equipe tem de aceitar o fato de
que o problema que eles estão solucionando hoje talvez não seja o problema que necessita
ser solucionado amanhã. Entretanto, lições aprendidas de qualquer atividade de solução
de problemas (inclusive aquelas que resolvem o problema errado) podem ser, futuramente,
benéficas para a equipe no projeto.

Confiança mútua e respeito. A equipe ágil deve tornar-se uma equipe tal qual a que
DeMarco e Lister [DeM98] denominam de equipe “consistente” (Capı́tulo 24). Uma equipe
consistente demonstra a confiança e o respeito necessários para torná-la “tão fortemente
unida que o todo fica maior do que a soma das partes”. [DeM98]

Auto-organização. No contexto do desenvolvimento ágil, a auto-organização implica três
fatores: (1) a equipe ágil se organiza para o trabalho a ser feito, (2) a equipe organiza o pro-
cesso para melhor se adequar ao seu ambiente local, (3) a equipe organiza o cronograma
de trabalho para melhor cumprir a entrega do incremento de software. A auto-organização
possui uma série de benefı́cios técnicos, porém, mais importante, é o fato de servir para
melhorar a colaboração e levantar o moral da equipe. Em essência, a equipe faz seu próprio

2 As organizações de engenharia de software bem-sucedidas reconhecem essa realidade independentemente do modelo de
processos por elas escolhido.

“Muito da agilidade
dos métodos deriva
do fato de terem
suas bases no
conhecimento tácito
incorporado pela
e na equipe, em
vez de registrar
por escrito tal
conhecimento em
planejamentos.”

Barry Boehm

Quais
são as

caracterı́sticas-
-chave que devem
estar presentes
entre as pessoas
integrantes de
uma equipe
de software
eficiente?

?

“O que é visto como
razoavelmente
suficiente por uma
equipe pode ser
avaliado como mais
do que suficiente
ou insuficiente por
uma outra equipe.”

Alistair
Cockburn

Uma equipe auto-
-organizada está no
controle do trabalho
que realiza. A equipe
estabelece seus
próprios compromissos
e define planos para
cumpri-los.

Grupo 07

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 87

gerenciamento. Ken Schwaber [Sch02] menciona tais caracterı́sticas ao escrever: “A equipe
seleciona quanto trabalho acredita ser capaz de realizar dentro da iteração e se compromete
com trabalho. Nada desmotiva tanto uma equipe como um terceiro assumir compromissos
por ela. Nada motiva tanto uma equipe quanto aceitar a responsabilidade de cumprir com-
pletamente o prometido feito por ela própria”.

EXTREME PROGRAMMING – XP (PROGRAMAÇÃO EXTREMA)

Para ilustrar um processo ágil de forma um pouco mais detalhada, segue uma visão geral de
Extreme Programming – XP (Programação Extrema), a abordagem mais amplamente utilizada
para desenvolvimento de software ágil. Embora os primeiros trabalhos sobre os conceitos e mé-
todos associados à XP tenham ocorrido durante o final dos anos 1980, o trabalho seminal sobre
o tema foi escrito por Kent Beck [Bec04a]. Mais recentemente, foi proposta uma variação da XP,
denominada Industrial XP (IXP) [Ker05]. A IXP refina a XP e visa o processo ágil especificamente
para uso em grandes organizações.

3.4.1 Valores da XP

Beck [Bec04a] define um conjunto de cinco valores que estabelecem as bases para todo
trabalho realizado como parte da XP — comunicação, simplicidade, feedback (realimentação
ou retorno), coragem e respeito. Cada um desses valores é usado como um direcionador das
atividades, ações e tarefas especı́ficas da XP.

Para conseguir a comunicação efetiva entre engenheiros de software e outros envolvidos (por
exemplo, estabelecer os fatores e funções necessárias para o software), a XP enfatiza a colabo-
ração estreita, embora informal (verbal), entre clientes e desenvolvedores, o estabelecimento de
metáforas eficazes3 para comunicar conceitos importantes, feedback (realimentação) contı́nuo
e evitar documentação volumosa como meio de comunicação.

Para alcançar a simplicidade, a XP restringe os desenvolvedores a projetar apenas para as
necessidades imediatas, em vez de considerarem as necessidades futuras. O intuito é criar um
projeto simples que possa ser facilmente implementado em código. Se o projeto tiver que ser
melhorado, ele poderá ser refabricado4 mais tarde.

O feedback provém de três fontes: do próprio software implementado, do cliente e de outros
membros da equipe de software. Através da elaboração do projeto e da implementação de uma
estratégia de testes eficaz (Capı́tulos 17 a 20), o software (via resultados de testes) propicia um
feedback para a equipe ágil. A XP faz uso do teste de unidades como sua tática de testes primá-
ria. À medida que cada classe é desenvolvida, a equipe desenvolve um teste de unidades para
exercitar cada operação de acordo com sua funcionalidade especificada. À medida que um incre-
mento é entregue a um cliente, as histórias de usuários ou casos de uso (Capı́tulo 5) implementa-
dos pelo incremento são usados como base para testes de aceitação. O grau em que o software
implementa o produto, a função e o comportamento do caso em uso é uma forma de feedback.
Por fim, conforme novas necessidades surgem como parte do planejamento iterativo, a equipe
dá ao cliente um rápido feedback referente ao impacto nos custos e no cronograma.

Beck [Bec04a] afirma que a adoção estrita a certas práticas da XP exige coragem. Uma pa-
lavra melhor poderia ser disciplina. Por exemplo, frequentemente, há uma pressão significativa
para a elaboração do projeto pensando em futuros requisitos. A maioria das equipes de software
sucumbe, argumentando que “projetar para amanhã” poupará tempo e esforço no longo prazo.
Uma equipe XP ágil deve ter disciplina (coragem) para projetar para hoje, reconhecendo que as

3 No contexto da XP, uma metáfora é “uma história que todos — clientes, programadores e gerentes — podem contar sobre
como o sistema funciona” [Bec04a].

4 A refabricação permite a um engenheiro de software aperfeiçoar a estrutura interna de um projeto (ou código-fonte) sem al-
terar sua funcionalidade ou comportamento externos. Em essência, a refabricação pode ser usada para melhorar a eficiência,
a legibilidade ou o desempenho de um projeto ou o código que implementa um projeto.

3.4

Simplifique sempre
que puder, mas
tenha ciência de que
um “retrabalho”
(refabricação,
redesenvolvimento)
contı́nuo consegue
absorver tempo e
recursos significativos.

AVISO

“A XP é a resposta
para a pergunta:
‘Qual o mı́nimo
possı́vel que se
pode realizar e
mesmo assim
desenvolver
um software
grandioso?’.”

Anônimo

Grupo 08

88 PARTE 1 O PROCESSO DE SOFTWARE

necessidades futuras podem mudar dramaticamente exigindo, consequentemente, substancial
retrabalho em relação ao projeto e ao código implementado.

Ao seguir cada um desses valores, a equipe ágil inculca respeito entre seus membros, entre
outros envolvidos e os membros da equipe, e, indiretamente, para o próprio software. Conforme
conseguem entregar com sucesso incrementos de software, a equipe desenvolve cada vez mais
respeito pelo processo XP.

3.4.2 O Processo XP

A Extreme Programming (programação extrema) emprega uma abordagem orientada a ob-
jetos (Apêndice 2) como seu paradigma de desenvolvimento preferido e envolve um conjunto
de regras e práticas constantes no contexto de quatro atividades metodológicas: planejamento,
projeto, codificação e testes. A Figura 3.2 ilustra o processo XP e destaca alguns conceitos e
tarefas-chave associados a cada uma das atividades metodológicas. As atividades-chave da XP
são sintetizadas nos parágrafos a seguir.

Planejamento. A atividade de planejamento (também denominada o jogo do planejamento) se
inicia com a atividade de ouvir — uma atividade de levantamento de requisitos que capacita os mem-
bros técnicos da equipe XP a entender o ambiente de negócios do software e possibilita que se con-
siga ter uma percepção ampla sobre os resultados solicitados, fatores principais e funcionalidade

A atividade de “Ouvir” conduz à criação de um conjunto de “histórias” (também denomi-
nado histórias de usuários) que descreve o resultado, as caracterı́sticas e a funcionalidade re-
quisitados para o software a ser construı́do. Cada história (similar aos casos de uso descritos
no Capı́tulo 5) é escrita pelo cliente e é colocada em uma ficha. O cliente atribui um valor (uma
prioridade) à história baseando-se no valor de negócio global do recurso ou função.5 Os mem-
bros da equipe XP avaliam então cada história e atribuem um custo — medido em semanas de
desenvolvimento — a ela. Se a história requerer, por estimativa, mais do que três semanas de
desenvolvimento, é solicitado ao cliente para dividir a história em histórias menores e a atri-
buição de valor e custo ocorre novamente. É importante notar que podem ser escritas novas
histórias a qualquer momento.

5 O valor de uma história também pode depender da presença de uma outra história.

WebRef

Uma excelente visão
geral das “regras”
para XP pode ser
encontrada em www.
extremeprogramm
ing.org/rules.html.

O que é
uma

“história” XP?
?

valores das histórias
 de usuários
 critérios de teste de aceitação
plano de iteração

projeto simples
 cartões CRC

teste de unidades
 integração contínua

incremento de software
 velocidade de projeto registrada
 (computada)

soluções pontuais
 protótipos

refabricação

programação em dupla

teste de aceitação

Versão

projeto

codificaçãoplanejamento

teste

FIGURA 3.2

O processo da
Extreme
Programming (XP)

Grupo

09

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 89

Clientes e desenvolvedores trabalham juntos para decidir como agrupar histórias para a
versão seguinte (o próximo incremento de software) a ser desenvolvida pela equipe XP. Conse-
guindo chegar a um compromisso básico (concordância sobre quais histórias serão incluı́das,
data de entrega e outras questões de projeto) para uma versão, a equipe XP ordena as histórias
a ser desenvolvidas em uma das três formas: (1) todas serão implementadas imediatamente (em
um prazo de poucas semanas), (2) as histórias de maior valor serão deslocadas para cima no
cronograma e implementadas primeiro ou (3) as histórias de maior risco serão deslocadas para
cima no cronograma e implementadas primeiro.

Depois de a primeira versão do projeto (também denominada incremento de software) ter
sido entregue, a equipe XP calcula a velocidade do projeto. De forma simples, a velocidade do
projeto é o número de histórias de clientes implementadas durante a primeira versão. Assim, a
velocidade do projeto pode ser utilizada para (1) ajudar a estimar as datas de entrega e o crono-
grama para versões subsequentes e (2) determinar se foi assumido um compromisso exagerado
para todas as histórias ao longo de todo o projeto de desenvolvimento. Se ocorrer um exagero,
o conteúdo das versões é modificado ou as datas finais de entrega são alteradas.

Conforme o trabalho de desenvolvimento prossegue, o cliente pode acrescentar histórias,
mudar o valor de uma existente, dividir algumas ou eliminá-las. Em seguida, a equipe XP recon-
sidera todas as versões remanescentes e modifica seus planos de acordo.

Projeto. O projeto XP segue rigorosamente o princı́pio KIS (keep it simple, ou seja, preserve a
simplicidade). É preferı́vel sempre um projeto simples do que uma representação mais comple-
xa. Como acréscimo, o projeto oferece um guia de implementação para uma história à medida
que é escrita — nada mais, nada menos. O projeto de funcionalidade extra (pelo fato de o de-
senvolvedor supor que ela será necessária no futuro) é desencorajado.6

A XP encoraja o uso de cartões CRC (Capı́tulo 7) como um mecanismo eficaz para pensar
sobre o software em um contexto orientado a objetos. Os cartões CRC (classe-responsabilidade-
colaborador) identificam e organizam as classes orientadas a objetos7 relevantes para o incre-
mento de software corrente. A equipe XP conduz o exercı́cio de projeto usando um processo
similar ao descrito no Capı́tulo 8. Os cartões CRC são o único artefato de projeto produzidos
como parte do processo XP.

Se um difı́cil problema de projeto for encontrado como parte do projeto de uma história, a XP
recomenda a criação imediata de um protótipo operacional dessa parte do projeto. Denominada
solução pontual, o protótipo do projeto é implementado e avaliado. O objetivo é reduzir o risco
para quando a verdadeira implementação iniciar e validar as estimativas originais para a história
contendo o problema de projeto.

Na seção anterior, foi feita a observação de que a XP encoraja a refatoração — uma técnica
de construção que também é um método para otimização de projetos. Fowler [Fow00] descreve
a refabricação da seguinte maneira:

Refabricação é o processo de alteração de um sistema de software de tal forma que não se altere o
comportamento externo do código, mas se aprimore a estrutura interna. É uma forma disciplinada de
organizar código [e modificar/simplificar o projeto interno] que minimiza as chances de introdução de
bugs. Em resumo, ao se refabricar, se está aperfeiçoando o projeto de codificação depois de este ter
sido feito.

Como o projeto XP não usa praticamente nenhuma notação e produz poucos, se algum,
artefatos, além dos cartões CRC e soluções pontuais, o projeto é visto como algo transitório
que pode e deve ser continuamente modificado conforme a construção prossegue. O objetivo
da refabricação é controlar tais modificações sugerindo pequenas mudanças de projeto “ca-
pazes de melhorá-lo radicalmente” [Fow00]. Deve ser observado, no entanto, que o esforço

6 Tais diretrizes de projeto deveriam ser seguidas em todos os métodos de engenharia de software, apesar de ocorrer situações
em que sofisticadas terminologia e notação possam constituir obstáculo para a simplicidade.

7 As classes orientadas a objetos são discutidas no Apêndice 2, no Capı́tulo 8 e ao longo da Parte 2 deste livro.

WebRef

Um “jogo de
planejamento” XP
bastante interessante
pode ser encontrado
em: c2.com/cgi/
wiki?planning
Game.

A XP tira a ênfase da
importância do projeto.
Nem todos concordam.
De fato, há ocasiões
em que o projeto deve
ser enfatizado.

AVISO

WebRef

Técnicas de refabricação
e ferramentas podem
ser encontradas em:
www.refactoring.
com.

A velocidade do
projeto é uma medida
sutil da produtividade
de uma equipe.

A refabricação
aprimora a estrutura
interna de um projeto
(ou código-fonte)
sem alterar sua
funcionalidade ou
comportamento
externos.

Grupo 10

90 PARTE 1 O PROCESSO DE SOFTWARE

necessário para a refabricação pode aumentar dramaticamente à medida que o tamanho de
uma aplicação cresça.

Um aspecto central na XP é o de que a elaboração do projeto ocorre tanto antes como depois
de se ter iniciado a codificação. Refabricação significa que o “projetar” é realizado continua-
mente enquanto o sistema estiver em elaboração. Na realidade, a própria atividade de desenvol-
vimento guiará a equipe XP quanto à aprimoração do projeto.

Codificação. Depois de desenvolvidas as histórias e o trabalho preliminar de elaboração do
projeto ter sido feito, a equipe não passa para a codificação, mas sim, desenvolve uma série de
testes de unidades que exercitarão cada uma das histórias a ser inclusas na versão corrente
(incremento de software).8 Uma vez criado o teste de unidades9, o desenvolvedor poderá melhor
focar-se no que deve ser implementado para ser aprovado no teste. Nada estranho é adicionado
(KIS). Estando o código completo, este pode ser testado em unidade imediatamente, e, dessa
forma, prover, instantaneamente, feedback para os desenvolvedores.

Um conceito-chave na atividade de codificação (e um dos mais discutidos aspectos da XP)
é a programação em dupla. A XP recomenda que duas pessoas trabalhem juntas em uma mes-
ma estação de trabalho para criar código para uma história. Isso fornece um mecanismo para
resolução de problemas em tempo real (duas cabeças normalmente funcionam melhor do que
uma) e garantia da qualidade em tempo real (o código é revisto à medida que é criado). Ele
também mantém os desenvolvedores focados no problema em questão. Na prática, cada pes-
soa assume um papel ligeiramente diferente. Por exemplo, uma pessoa poderia pensar nos de-
talhes de codificação de determinada parte do projeto, enquanto outra assegura que padrões
de codificação (uma parte exigida pela XP) sejam seguidos ou que o código para a história
passará no teste de unidades desenvolvido para validação do código em relação à história.

Conforme a dupla de programadores completa o trabalho, o código que desenvolveram
é integrado ao trabalho de outros. Em alguns casos, isso é realizado diariamente por uma
equipe de integração. Em outros, a dupla de programadores é responsável pela integração. A
estratégia de “integração contı́nua” ajuda a evitar problemas de compatibilidade e de inter-
faceamento, além de criar um ambiente “teste da fumaça” (Capı́tulo 17) que ajuda a revelar
erros precocemente.

Testes. Já foi observado que a criação de testes de unidade, antes de começar a codificação, é
um elemento-chave da abordagem XP. Os testes de unidade criados devem ser implementados
usando-se uma metodologia que os capacite a ser automatizados (assim, poderão ser executados
fácil e repetidamente). Isso encoraja uma estratégia de testes de regressão (Capı́tulo 17), toda vez
em que o código for modificado (o que é frequente, dada a filosofia de refabricação da XP).

Como os testes de unidades individuais são organizados em um “conjunto de testes univer-
sal” [Wel99], os testes de integração e validação do sistema podem ocorrer diariamente. Isso
dá à equipe XP uma indicação contı́nua do progresso e também permite lançar alertas logo no
inı́cio, caso as coisas não andem bem. Wells [Wel99] afirma: “Corrigir pequenos problemas em
intervalos de poucas horas leva menos tempo do que corrigir problemas enormes próximo ao
prazo de entrega”.

Os testes de aceitação da XP, também denominados testes de cliente, são especificados pelo
cliente e mantêm o foco nas caracterı́sticas e na funcionalidade do sistema total que são visı́veis
e que podem ser revistas pelo cliente. Os testes de aceitação são obtidos de histórias de usuá-
rios implementadas como parte de uma versão de software.

8 Essa abordagem é como conhecer as perguntas de uma prova antes de começar a estudar. Torna o estudo muito mais fácil,
permitindo que se concentre a atenção apenas nas perguntas que serão feitas.

9 O teste de unidades, discutido detalhadamente no Capı́tulo 17, concentra-se em um componente de software individual,
exercitando a interface, a estrutura de dados e a funcionalidade do componente, em uma tentativa de que se revelem erros
pertinentes ao componente.

WebRef

Informações úteis
sobre a XP podem ser
obtidas em www.
xprogramming.
com.

O que é
programação

em dupla?
?

Muitas equipes
de software são
constituı́das por
individualistas. Deverá
haver empenho
para modificar tal
cultura, para que a
programação em dupla
funcione efetivamente.

AVISO

Como são
usados os

testes de unidade
na XP?

?

Os testes de aceitação
da XP são elaborados
com base nas histórias
de usuários.

Grupo 11

Fim Grupo 11

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 91

3.4.3 Industrial XP

Joshua Kerievsky [Ker05] descreve a Industrial Extreme Programming (IXP) — programação
extrema industrial — da seguinte maneira: “A IXP é uma evolução orgânica da XP. Ela é imbuı́da
do espı́rito minimalista, centrado no cliente e orientado a testes da XP. Difere principalmente da
XP original por sua maior inclusão do gerenciamento, por seu papel expandido para os clientes
e por suas práticas técnicas atualizadas”. A IXP incorpora seis novas práticas desenvolvidas para
ajudar a assegurar que um projeto XP funcione com êxito em empreendimentos significativos
em uma grande organização.

Avaliação imediata. Antes do inı́cio de um projeto IXP, a organização deve realizar uma
avaliação imediata. A avaliação verifica se (1) existe um ambiente de desenvolvimento apro-
priado para sustentar a IXP, (2) a equipe será composta por um conjunto apropriado de
interessados, (3) a organização possui um programa de qualidade diferenciado e suporta
contı́nuo aperfeiçoamento, (4) a cultura organizacional apoiará os novos valores de uma
equipe ágil e (5) a comunidade de projeto ampliada será composta apropriadamente.

Comunidade de projeto. A XP clássica sugere que se aloquem as pessoas acertadas para
compor a equipe ágil e garantir o sucesso. Isso implica pessoas da equipe bem treinadas,
adaptáveis e experientes e que tenham temperamento apropriado para contribuir para uma
equipe auto-organizada. Ao se aplicar a XP em um projeto importante de uma grande em-
presa, o conceito da “equipe” deve transformar-se no de comunidade. A comunidade pode
ter um tecnólogo e clientes fundamentais para o sucesso de um projeto, assim como muitos
outros envolvidos (por exemplo, responsáveis jurı́dicos, auditores do controle da qualidade,
representantes da área de produção ou de categorias de vendas) que “frequentemente se
encontram na periferia de um projeto IXP, mas que podem desempenhar importante papel
no projeto” [Ker05]. Na IXP, os membros da comunidade devem ter papéis explicitamente
definidos e os mecanismos de comunicação e de coordenação relativos aos elementos da
comunidade devem estar determinados.

Mapeamento do projeto. A própria equipe IXP avalia o projeto para determinar se este se
justifica em termos de negócios e se irá ultrapassar as metas e objetivos globais da organi-
zação. O mapeamento também examina o contexto do projeto para estabelecer como este
complementa, amplia ou substitui sistemas ou processos existentes.

Gerenciamento orientado a testes. Um projeto IXP requer critérios mensuráveis para
avaliar o estado do projeto e do progresso obtido até então. O gerenciamento orientado a
testes estabelece uma série de “destinos” mensuráveis [Ker05] e define mecanismos para
determinar se estes foram atingidos ou não.

Retrospectivas. Uma equipe IXP conduz uma revisão técnica especializada (Capı́tulo 15) após
a entrega de um incremento de software. Denominada retrospectiva, a revisão examina “itens,
eventos e lições aprendidas” [Ker05] ao longo do processo de incremento de software e/ou do
desenvolvimento da versão completa do software. O objetivo é aprimorar o processo da IXP.

Aprendizagem contı́nua. Sendo a aprendizagem uma parte vital para o aperfeiçoa-
mento contı́nuo do processo, os membros da equipe XP são encorajados (e possivelmente
incentivados) a aprender novos métodos e técnicas que possam conduzir a um produto de
melhor qualidade.

Somando-se às apresentadas, a IXP modifica uma série de práticas XP existentes. O desen-
volvimento orientado por histórias (story-driven development, SDD) insiste que as histórias para
testes de aceitação sejam escritas antes de gerar uma única linha de código. O projeto orientado
por domı́nio (domain-driven design, DDD) é um aprimoramento do conceito “metáfora de sis-
tema” usado na XP. O DDD [Eva03] sugere a criação evolucionária de um modelo de domı́nio
que “represente acuradamente como pensam os especialistas de determinado domı́nio dentro
de sua disciplina” [Ker05]. O emparelhamento amplia o conceito de programação em dupla da

Que novas
práticas são

acrescidas à XP
para elaborar a
IXP?

?

“Habilidade
consiste no que
se é capaz de
fazer. Motivação
determina o que
você faz. Atitude
determina quão
bem você faz.”

Lou Holtz

92 PARTE 1 O PROCESSO DE SOFTWARE

XP, ao incluir gerentes e outros envolvidos. O intuito é ampliar o compartilhamento de conheci-
mentos entre os membros da equipe XP que possam não estar diretamente envolvidos no desen-
volvimento técnico. A usabilidade iterativa desencoraja o projeto de interfaces de carregamento
frontal (front-loaded interface design), sendo a favor do projeto de usabilidade que evolui con-
forme os incrementos sejam entregues e a interação entre usuários e o software seja estudada.

A IXP faz modificações menores para outras práticas XP e redefine certos papéis e respon-
sabilidades para torná-los mais harmonizados com projetos importantes de organizações. Para
uma discussão mais ampla sobre a IXP, visite http://industrialxp.org.

3.4.4 O Debate XP

Todos os novos métodos e modelos de processos estimulam debates úteis e, em alguns ca-
sos, debates acalorados. A Extreme Programming provocou ambos. Em um livro interessante
que examina a eficácia da XP, Stephens e Rosenberg [Ste03] argumentam que muitas práticas
XP valem a pena, mas outras foram superestimadas e algumas poucas são problemáticas. Os
autores sugerem que a codependência da prática da XP representa sua força e sua fraqueza.
Pelo fato de muitas organizações adotarem apenas um subconjunto de práticas XP, elas en-
fraquecem a eficácia de todo o processo. Seus defensores rebatem dizendo que a XP é aper-
feiçoada continuamente e que muitos dos itens levantados pela crı́tica têm sido acessados
conforme a prática da XP ganha maturidade. Entre os itens que continuam a incomodar certos
crı́ticos da XP estão:10

UÊ Volatilidade de requisitos. Pelo fato de o cliente ser um membro ativo da equipe XP, al-
terações de requisitos são solicitadas informalmente. Como consequência, o escopo do
projeto pode mudar e trabalhos anteriores podem ter de vir a ser alterados, a fim de
acomodar as necessidades de então. Seus defensores argumentam que isso acontece
independentemente do processo aplicado e que a XP oferece mecanismos para controlar
o surgimento incontrolado de novos escopos.

Necessidades conflitantes de clientesUÊ . Projetos em quantidade possuem múltiplos clien-
tes, cada um com seu próprio conjunto de necessidades. Na XP, a própria equipe tem a
tarefa de assimilar as necessidades de diferentes clientes, um trabalho que pode estar
além de seu escopo de autoridade.

Os requisitos são levantados informalmenteUÊ . Histórias de usuários e testes de aceitação
são a única manifestação explı́cita de requisitos da XP. Seus crı́ticos argumentam que,
frequentemente, torna-se necessário um modelo ou especificação mais formal para as-
segurar que omissões, inconsistências e erros sejam descobertos antes que o sistema
seja construı́do. Seus defensores rebatem dizendo que a natureza mutante de requisitos
torna tais modelos e especificações obsoletos praticamente logo depois de terem sido
desenvolvidos.

Falta de projeto formalUÊ . A XP tira a ênfase da necessidade do projeto de arquitetura e, em
muitos casos, sugere que todos os tipos de projetos devam ser relativamente informais.
Seus crı́ticos argumentam que em sistemas complexos deve-se enfatizar a elaboração
do projeto para assegurar que a estrutura geral do software apresentará qualidade e
facilidade de manutenção. Já os defensores da XP sugerem que a natureza incremental
do processo XP limita a complexidade (a simplicidade é um valor fundamental) e, conse-
quentemente, reduz a necessidade de um projeto extenso.

Deve-se observar que todo processo de software tem suas falhas e que muitas organizações
de software usaram, com êxito, a XP. O segredo é reconhecer onde um processo pode apresentar
fraquezas e adaptá-lo às necessidades especı́ficas de sua organização.

10 Para uma visão detalhada de algumas crı́ticas ponderadas feitas ao XP, visite www.softwarereality.com/ExtremeProgramming.jsp.

Quais são
alguns

dos pontos que
conduzem a um
debate a respeito
da XP?

?

Fim Grupo 12

Grupo 12

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 93

Considerando o desenvolvimento de

software ágil

Cena: de Doug Miller.

Atores: Doug Miller, gerente de engenharia de software; Jamie
Lazar, membro da equipe de software; Vinod Raman, membro
da equipe de software.

Conversa:

(Batendo à porta, Jamie e Vinod adentram à sala de Doug)

Jamie: Doug, você tem um minuto?

Doug: Com certeza, Jamie, o que há?

Jamie: Estivemos pensando a respeito da discussão sobre pro-
cessos, de ontem... Sabe, que processo vamos escolher para
este novo projeto CasaSegura.

Doug: E?

Vinod: Eu estava conversando com um amigo de uma outra
empresa e ele me falou sobre a Extreme Programming. É um
modelo de processo ágil... Já ouviu falar?

Doug: Sim, algumas coisas boas, outras ruins.

Jamie: Bem, pareceu muito bom para nós. Permite que se de-
senvolva software realmente rápido, usa algo chamado progra-
mação em dupla para fazer checagens de qualidade em tempo
real... É bem legal, eu acho.

Doug: Realmente, apresenta um monte de ideias muito boas.
Gosto do conceito de programação em dupla, por exemplo, e
da ideia de que os envolvidos devam fazer parte da equipe.

Jamie: O quê? Quer dizer que o pessoal de marketing traba-
lhará conosco na equipe de projeto?

Doug (confirmando com a cabeça): Eles são envolvidos,
não são?

Jamie: Jesus... Eles solicitarão alterações a cada cinco minutos.

Vinod: Não necessariamente. Meu amigo me disse que existem
formas de se “abarcar” as mudanças durante um projeto XP.

Doug: Portanto, meus amigos, vocês acham que deverı́amos
usar a XP?

Jamie: Definitivamente, vale considerar.

Doug: Eu concordo. E mesmo que optássemos por um modelo in-
cremental como nossa abordagem, não há nenhuma razão para
não podermos incorporar muito do que a XP tem a oferecer.

Vinod: Doug, mas antes você disse “algumas coisas boas, ou-
tras ruins”. O que são as “coisas ruins”?

Doug: O que não me agrada é a maneira pela qual a XP dá
menos importância à análise e ao projeto... Dizem algo como: a
codificação resume a ação para construir um software.

(Os membros da equipe se entreolham e sorriem.)

Doug: Então vocês concordam com a abordagem XP?

Jamie (falando por ambos): Escrever código é o que fa-
zemos, chefe!

Doug (rindo): É verdade, mas eu gostaria de vê-lo perdendo
um pouco menos de tempo codificando para depois recodificar
e dedicando um pouco mais de tempo analisando o que precisa
ser feito e projetando uma solução que funcione.

Vinod: Talvez possamos ter as duas coisas, agilidade com um
pouco de disciplina.

Doug: Acho que sim, Vinod. Na realidade, tenho certeza disso.

CASASEGURA

OUTROS MODELOS DE PROCESSOS ÁGEIS

Na história da engenharia de software há dezenas de metodologias e descrições de proces-
sos, métodos e notações de modelagem, ferramentas e tecnologias obsoletas. Cada um atingiu
grande notoriedade e foi então ofuscado por algo novo e (supostamente) melhor. Com a intro-
dução de uma ampla gama de modelos de processos ágeis — todos disputando por aceitação
pela comunidade de desenvolvimento de software —, o movimento ágil está seguindo o mesmo
caminho histórico.11

Conforme citado na última seção, o modelo mais amplamente utilizado de todos os modelos
de processos ágeis é o da Extreme Programming (XP). Porém, muitos outros têm sido propostos
e encontram-se em uso no setor. Entre os mais comuns, temos:

Desenvolvimento de software adaptativo (Adaptive Software Development, ASD)UÊ

ScrumUÊ

Método de desenvolvimento de sistemas dinâmicos (Dynamic Systems Development UÊ
Method, DSDM)

CrystalUÊ

11 Isso não é algo ruim. Antes que um ou mais modelos ou métodos sejam aceitos como um padrão de fato, todos devem com-
petir para conquistar os corações e mentes dos engenheiros de software. Os “vencedores” evoluem e se transformam nas
melhores práticas, enquanto os “perdedores” desaparecem ou se fundem aos modelos vencedores.

3.5

“Nossa profissão
passa por
metodologias como
uma garota de 14
anos passa por
roupas.”

Stephen
Hawrysh e
Jim Ruprecht

94 PARTE 1 O PROCESSO DE SOFTWARE

Desenvolvimento dirigido a Funcionalidades (Feature Drive Development, FDD)UÊ

Desenvolvimento de software enxuto (Lean Software Development, LSD)UÊ

Modelagem ágil (Agile Modeling, AM)UÊ

Processo unificado ágil (Agile Unified Process, AUP)UÊ

Nas seções seguintes, apresenta-se uma visão geral muito breve de cada um desses modelos
de processos ágeis. É importante observar que todos estão em conformidade (em maior ou me-
nor grau) com o Manifesto for Agile Software Development e com os princı́pios citados na Seção
3.3.1. Para mais detalhes, veja as referências citadas em cada subseção ou, para uma pesquisa,
examine a entrada “agile software development” na Wikipedia.12

3.5.1 Desenvolvimento de Software Adaptativo (ASD)

O desenvolvimento de software adaptativo (Adaptive Software Development) foi proposto por
Jim Highsmith [Hig00] como uma técnica para construção de software e sistemas complexos.
As bases filosóficas do ASD se concentram na colaboração humana e na auto-organização das
equipes.

Highsmith argumenta que uma abordagem de desenvolvimento ágil e adaptativo baseada na
colaboração constitui “um recurso para organizar nossas complexas interações, tanto quanto
disciplina e engenharia o são”. Ele define um “ciclo de vida” ASD (Figura 3.3) que incorpora três
fases: especulação, colaboração e aprendizagem.

Durante a especulação, o projeto é iniciado e conduzido o planejamento de ciclos adaptáveis.
O planejamento de ciclos adaptáveis usa as informações do inı́cio de projeto — o estabelecimen-
to da missão do cliente, as restrições do projeto (por exemplo, datas de entrega ou descrições
de usuários) e os requisitos básicos — para definir o conjunto de ciclos de versão (incrementos
de software) que serão requisitados para o projeto.

Não importa quão completo e com visão de futuro seja o plano de ciclos, invariavelmente
sofrerá mudanças. Baseando-se nas informações obtidas ao se completar o primeiro ciclo, o
plano é revisto e ajustado de modo que o trabalho planejado melhor se ajuste à realidade na
qual a equipe ASD está trabalhando.

12 Veja http://en.wikipedia.org/wiki/Agile_software_development#Agile_methods.

WebRef

Recursos úteis para ASD
podem ser encontrados
em www.
adaptivesd.com.

A colaboração efetiva
com seu cliente
ocorrerá somente
se você extinguir
quaisquer atitudes de
“nós e eles”.

AVISO

planejamento de diclos adaptativos
 estabelecimento da missão
 restrições do projeto
 requisitos básicos
plano de entregas com tempo estabelecido

componentes implementados/testados
 grupos focados para feedback
 revisões técnicas formais
autópsias

Levantamento de necessidades
 JAD
 miniespecificações

incremento de software
 ajustes para ciclos subsequentes

Versão

colaboração

especulação

aprendizagem

FIGURA 3.3

Desenvolvimento de
software adaptável

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 95

As pessoas motivadas usam a colaboração de uma forma que multiplique seus talentos e pro-
duções criativas além de seus números absolutos. Tal abordagem é tema recorrente em todos os
métodos ágeis. Porém, colaboração não é algo fácil, envolve comunicação e trabalho em equipe,
mas também enfatiza o individualismo, pois a criatividade individual desempenha um impor-
tante papel no pensamento colaborativo. Trata-se, sobretudo, de uma questão de confiança.
Pessoas que trabalham juntas têm de confiar umas nas outras para (1) criticar sem animosidade,
(2) auxiliar sem ressentimentos, (3) trabalhar tão arduamente ou mais do que elas fazem, (4)
possuir o conjunto de habilidades que contribua com o atual trabalho e (5) comunicar proble-
mas ou preocupações de forma que conduzam a ações efetivas.

Conforme os membros de uma equipe ASD comecem a desenvolver os componentes que
fazem parte de um ciclo adaptável, a ênfase reside no “aprendizado” tanto quanto reside no
progresso para um ciclo completado. De fato, Highsmith [Hig00] argumenta que os desenvol-
vedores de software normalmente superestimam seu próprio entendimento (da tecnologia, do
processo e do projeto) e que a aprendizagem irá ajudá-los a aumentar seus nı́veis reais de en-
tendimento. As equipes ASD aprendem de três maneiras: grupos focados (Capı́tulo 5), revisões
técnicas (Capı́tulo 14) e autópsias de projetos (análises postmortems).

A filosofia ASD tem seus méritos independentemente do modelo de processos utilizado. A
ênfase global da ASD está na dinâmica das equipes auto-organizadas, na colaboração interpes-
soal e na aprendizagem individual e da equipe que levam as equipes de projeto de software a
uma probabilidade muito maior de sucesso.

3.5.2 Scrum

Scrum (o nome provém de uma atividade que ocorre durante a partida de rugby13) é um
método de desenvolvimento ágil de software concebido por Jeff Sutherland e sua equipe de de-
senvolvimento no inı́cio dos anos 1990. Mais recentemente, foram realizados desenvolvimentos
adicionais nos métodos gráficos Scrum por Schwaber e Beedle [Sch01a].

Os princı́pios do Scrum são consistentes com o manifesto ágil e são usados para orientar
as atividades de desenvolvimento dentro de um processo que incorpora as seguintes atividades
estruturais: requisitos, análise, projeto, evolução e entrega. Em cada atividade metodológica,
ocorrem tarefas a realizar dentro de um padrão de processo (discutido no parágrafo a seguir)
chamado sprint. O trabalho realizado dentro de um sprint (o número de sprints necessários para
cada atividade metodológica varia dependendo do tamanho e da complexidade do produto) é
adaptado ao problema em questão e definido, e muitas vezes modificado em tempo real, pela
equipe Scrum. O fluxo geral do processo Scrum é ilustrado na Figura 3.4.

O Scrum enfatiza o uso de um conjunto de padrões de processos de software [Noy02] que pro-
varam ser eficazes para projetos com prazos de entrega apertados, requisitos mutáveis e crı́ticos de
negócio. Cada um desses padrões de processos define um conjunto de ações de desenvolvimento:

Registro pendente de trabalhos (Backlog) — uma lista com prioridades dos requisitos ou
funcionalidades do projeto que fornecem valor comercial ao cliente. Os itens podem ser adi-
cionados a esse registro em qualquer momento (é assim que as alterações são introduzidas). O
gerente de produto avalia o registro e atualiza as prioridades conforme requisitado.

Urgências (corridas de curta distância) sprints — consistem de unidades de trabalho solici-
tadas para atingir um requisito estabelecido no registro de trabalho (backlog) e que precisa ser
ajustado dentro de um prazo já fechado (janela de tempo)14 (tipicamente 30 dias).

Alterações (por exemplo, itens do registro de trabalho — backlog work itens) não são intro-
duzidas durante execução de urgências (sprint). Portanto, o sprint permite que os membros de
uma equipe trabalhem em um ambiente de curto prazo, porém estável.

13 Um grupo de jogadores faz uma formação em torno da bola e seus companheiros de equipe trabalham juntos (às vezes, de
forma violenta!) para avançar com a bola em direção ao fundo do campo.

14 Janela de tempo (time boxing) é um termo de gerenciamento de projetos (veja a Parte 4 deste livro) que indica um perı́odo de
tempo destinado para cumprir alguma tarefa.

WebRef

Informações e recursos
úteis sobre o Scrum
podem ser encontrados
em www.control
chaos.com.

O ASD enfatiza o
aprendizado como
elemento-chave para
conseguir uma equipe
“auto-organizada”.

O Scrum engloba
um conjunto de
padrões de processos
enfatizando
prioridades de projeto,
unidades de trabalho
compartimentalizadas,
comunicação e
feedback frequente
por parte dos clientes.

Grupo 13

96 PARTE 1 O PROCESSO DE SOFTWARE

Reuniões Scrum — são reuniões curtas (tipicamente 15 minutos), realizadas diariamente
pela equipe Scrum. São feitas três perguntas-chave e respondidas por todos os membros da
equipe [Noy02]:

O que você realizou desde a última reunião de equipe?UÊ

Quais obstáculos está encontrando?UÊ

O que planeja realizar até a próxima reunião da equipe?UÊ

Um lı́der de equipe, chamado Scrum master, conduz a reunião e avalia as respostas de cada
integrante. A reunião Scrum, realizada diariamente, ajuda a equipe a revelar problemas poten-
ciais o mais cedo possı́vel. Ela também leva à “socialização do conhecimento” [Bee99] e, por-
tanto, promove uma estrutura de equipe auto-organizada.

Demos — entrega do incremento de software ao cliente para que a funcionalidade imple-
mentada possa ser demonstrada e avaliada pelo cliente. É importante notar que a demo pode
não ter toda a funcionalidade planejada, mas sim funções que possam ser entregues no prazo
estipulado.

Beedle e seus colegas [Bee99] apresentam uma ampla discussão sobre esses padrões: “O
Scrum pressupõe a existência do caos...”. Os padrões de processos do Scrum capacitam uma
equipe de software a trabalhar com sucesso em um mundo onde a eliminação da incerteza é
impossı́vel.

3.5.3 Método de Desenvolvimento de Sistemas Dinâmicos (DSDM)

O método de desenvolvimento de sistemas dinâmicos (Dynamic Systems Development Method)
[Sta97] é uma abordagem de desenvolvimento de software ágil que “oferece uma metodologia
para construir e manter sistemas que atendem restrições de prazo apertado através do uso da
prototipagem incremental em um ambiente de projeto controlado” [CCS02]. A filosofia DSDM
baseia-se em uma versão modificada do princı́pio de Pareto — 80% de uma aplicação pode ser
entregue em 20% do tempo que levaria para entregar a aplicação completa (100%).

WebRef

Recursos úteis para o
DSSD podem ser en-
contrados em www.
dsdm.org.

FIGURA 3.4

Fluxo do processo
Scrum

a cada
24 horas

30 dias

Scrum: Reuniões diárias de 15 minutos.
Os membros da equipe respondem às
questões básicas
1) O que você realizou desde a última Scrum?
2) Você está tendo alguma dificuldade?
3) O que você irá fazer antes da próxima reunião?Backlog do Sprint:

Funcionalidade(s)
atribuída(s)
ao sprint

Backlog do Produto:
Priorização das funcionalidades do produto desejadas pelo cliente

Itens pendentes
do Backlog
expandidos
pela equipe

A nova funcionalidade
é demonstrada no

final do sprint

Grupo 14

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 97

O DSDM é um processo de software iterativo em que cada iteração segue a regra dos 80%.
Ou seja, somente o trabalho suficiente é requisitado para cada incremento, para facilitar o movi-
mento para o próximo incremento. Os detalhes remanescentes podem ser completados depois,
quando outros requisitos de negócio forem conhecidos ou alterações tiverem sido solicitadas e
acomodadas.

O DSDM Consortium (www.dsdm.org) é um grupo mundial de empresas-membro que
coletivamente assume o papel de “mantenedor” do método. Esse consórcio definiu um modelo
de processos ágeis, chamado ciclo de vida DSDM que define três ciclos iterativos diferentes,
precedidos por duas atividades de ciclo de vida adicionais:

Estudo da viabilidade — estabelece os requisitos básicos de negócio e restrições associados
à aplicação a ser construı́da e depois avalia se a aplicação é ou não um candidato viável para o
processo DSDM.

Estudo do negócio — estabelece os requisitos funcionais e de informação que permitirão à
aplicação agregar valor de negócio; define também a arquitetura básica da aplicação e identifica
os requisitos de facilidade de manutenção para a aplicação.

Iteração de modelos funcionais — produz um conjunto de protótipos incrementais que demons-
tram funcionalidade para o cliente. (Nota: Todos os protótipos DSDM são feitos com a intenção de
que evoluam para a aplicação final entregue ao cliente.) Durante esse ciclo iterativo, o objetivo é
juntar requisitos adicionais ao se obter feedback dos usuários, conforme testam o protótipo.

Iteração de projeto e desenvolvimento — revisita protótipos desenvolvidos durante a iteração
de modelos funcionais para assegurar-se de que cada um tenha passado por um processo de
engenharia para capacitá-los a oferecer, aos usuários finais, valor de negócio em termos opera-
cionais. Em alguns casos, a iteração de modelos funcionais e a iteração de projeto e desenvolvi-
mento ocorrem ao mesmo tempo.

Implementação — aloca a última versão do incremento de software (um protótipo “operacio-
nalizado”) no ambiente operacional. Deve-se notar que: (1) o incremento pode não estar 100%
completo ou (2) alterações podem vir a ser solicitadas conforme o incremento seja alocado. Em
qualquer dos casos, o trabalho de desenvolvimento do DSDM continua, retornando-se à ativi-
dade de iteração do modelo funcional.

O DSDM pode ser combinado com a XP (Seção 3.4) para fornecer uma abordagem combina-
tória que define um modelo de processos consistente (o ciclo de vida do DSDM) com as práticas
básicas (XP) necessárias para construir incrementos de software. Além disso, os conceitos de
colaboração e de equipes auto-organizadas do ASD podem ser adaptados a um modelo de pro-
cessos combinado.

3.5.4 Crystal

Alistair Cockburn [Coc05] e Jim Highsmith [Hig02b] criaram a família Crystal de métodos
ágeis15 visando conseguir elaborar uma abordagem de desenvolvimento de software que priori-
zasse a adaptabilidade (“maneuverability”) durante o que Cockburn caracteriza como um “jogo
de invenção e comunicação cooperativo e com recursos limitados, tendo como primeiro obje-
tivo entregar software útil em funcionamento e como segundo objetivo preparar-se para o jogo
seguinte” [Coc02].

Para conseguir adaptabilidade, Cockburn e Highsmith definiram um conjunto de metodolo-
gias com elementos essenciais comuns a todas, mas com papéis, padrões de processos, pro-
dutos de trabalho e prática únicos para cada uma delas. A famı́lia Crystal é, na verdade, um
conjunto de exemplos de processos ágeis que provaram ser efetivos para diferentes tipos de
projetos. A intenção é possibilitar que equipes ágeis selecionem o membro da famı́lia Crystal
mais apropriado para seu projeto e seu ambiente.

15 O nome “crystal” (cristal) é derivado das caracterı́sticas dos cristais geológicos, cada qual com sua cor, forma e dureza pró-
prias.

Crystal é uma
famı́lia de modelos
de processos com
o mesmo “código
genético”, mas com
diferentes métodos
para se adaptarem
às caracterı́sticas do
projeto.

O DSDM é um uma
metodologia de
processos que pode
adotar a tática de
uma outra abordagem
ágil como a XP.

Grupo 15

98 PARTE 1 O PROCESSO DE SOFTWARE

3.5.5 Desenvolvimento Dirigido a Funcionalidades (FDD)

O desenvolvimento dirigido a funcionalidades (Feature Driven Development) foi concebido
originalmente por Peter Coad e seus colegas [Coa99] como um modelo de processos prático
para a engenharia de software orientada a objetos. Stephen Palmer e John Felsing [Pal02] esten-
deram e aperfeiçoaram o trabalho de Coad, descrevendo um processo ágil adaptativo que pode
ser aplicado a projetos de software de porte moderado e a projetos maiores.

Como outras abordagens ágeis, o FDD adota uma filosofia que (1) enfatiza a colaboração
entre pessoas da equipe FDD; (2) gerencia problemas e complexidade de projetos utilizando a
decomposição baseada em funcionalidades, seguida pela integração dos incrementos de soft-
ware, e (3) comunicação de detalhes técnicos usando meios verbais, gráficos e de texto. O FDD
enfatiza as atividades de garantia da qualidade de software por meio do encorajamento de uma
estratégia de desenvolvimento incremental, o uso inspeções do código e do projeto, a aplicação
de auditorias para garantia da qualidade de software (Capı́tulo 16), a coleta de métricas e o uso
de padrões (para análise, projeto e construção).

No contexto do FDD, funcionalidade “é uma função valorizada pelo cliente passı́vel de ser
implementada em duas semanas ou menos” [Coa99]. A ênfase na definição de funcionalidades
gera os seguintes benefı́cios:

Como as funcionalidades formam pequenos blocos que podem ser entregues, os usuá-UÊ
rios podem descrevê-las mais facilmente; compreender como se relacionam entre si mais
prontamente; e revisá-las melhor em termos de ambiguidade, erros ou omissões.

As funcionalidades podem ser organizadas em um agrupamento hierárquico relacionado UÊ
com o negócio.

Como uma funcionalidade é o incremento de software do FDD que pode ser entregue, a UÊ
equipe desenvolve funcionalidades operacionais a cada duas semanas.

Pelo fato de o bloco de funcionalidades ser pequeno, seus projeto e representações de UÊ
código são mais fáceis de inspecionar efetivamente.

O planejamento, cronograma e acompanhamento do projeto são guiados pela hierarquia UÊ
de funcionalidades, em vez de um conjunto de tarefas de engenharia de software arbitra-
riamente adotado.

Coad e seus colegas [Coa99] sugerem o seguinte modelo para definir uma funcionalidade:

<acao> o <resultado> <por| para quem |de |para que> um <objeto>

em que um <objeto> é “uma pessoa, local ou coisa (inclusive papéis, momentos no tempo ou
intervalos de tempo ou descrições parecidas com aquelas encontradas em catálogos)”. Exem-
plos de funcionalidades para uma aplicação de comércio eletrônico poderiam ser:

Adicione o produto ao carrinho

Mostre as especificações técnicas do produto

Armazene as informações de remessa para o cliente

Um conjunto de funcionalidades agrupa funcionalidades em categorias correlacionadas por
negócio e é definido [Coa99] com:

<acao> um <objeto>

Por exemplo: Fazer a venda de um produto é um conjunto de funcionalidades que abrangeria
os fatores percebidos anteriormente e outros.

A abordagem FDD define cinco atividades metodológicas “colaborativas” [Coa99] (no FDD
estas são denominadas “processos”) conforme mostra a Figura 3.5.

O FDD oferece maior ênfase às diretrizes e técnicas de gerenciamento de projeto do que
muitos outros métodos ágeis. Conforme os projetos crescem em tamanho e complexidade, com

WebRef

Uma ampla variedade
de artigos e apresenta-
ções sobre o FDD pode
ser encontrada em:
www.feature
drivendevelopment.
com/.

Grupo 16

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 99

frequência o gerenciamento de projeto para finalidade local torna-se inadequado. É essencial
para os desenvolvedores, seus gerentes e outros envolvidos compreenderem o posicionamento
do projeto — que realizações foram feitas e que problemas foram encontrados. Se a pressão
do prazo de entrega for significativa, é crı́tico determinar se os incrementos de software (fun-
cionalidades) foram agendados apropriadamente. Para tanto, o FDD define seis marcos durante
o projeto e a implementação de uma funcionalidade: “desenrolar (walkthroughs) do projeto,
projeto, inspeção de projeto, codificação, inspeção de código, progressão para construção/de-
senvolvimento” [Coa99].

3.5.6 Desenvolvimento de Software Enxuto (LSD)

O desenvolvimento de software enxuto (Lean Software Development) adaptou os princı́pios
da fabricação enxuta para o mundo da engenharia de software. Os princı́pios enxutos que ins-
piraram o processo LSD podem ser sintetizados ([Pop03], [Pop06a]) em: eliminar desperdício,
incorporar qualidade, criar conhecimento, adiar compromissos, entregar rápido, respeitar as pes-
soas e otimizar o todo.

Cada um dos princı́pios pode ser adaptado ao processo de software. Por exemplo, eliminar
desperdício no contexto de um projeto de software ágil pode ser interpretado como [Das05]: (1)
não adicionar recursos ou funções estranhas, (2) avaliar o impacto do custo e do cronograma de
qualquer requisito solicitado recentemente, (3) eliminar quaisquer etapas de processo supérflu-
as, (4) estabelecer mecanismos para aprimorar o modo pelo qual a equipe levanta informações,
(5) assegurar-se de que os testes encontrem o maior número de erros possı́vel, (6) reduzir o
tempo necessário para solicitar e obter uma decisão que afete o software ou o processo apli-
cado para criá-lo e (7) racionalizar a maneira pela qual informações são transmitidas a todos
envolvidos no processo.

Para uma discussão detalhada do LSD e diretrizes pragmáticas para implementação do pro-
cesso, consulte [Pop06a] e [Pop06b].

3.5.7 Modelagem Ágil (AM)

Existem muitas situações em que engenheiros de software têm de desenvolver sistemas
grandes, com detalhes crı́ticos em termos de negócio. O escopo e complexidade de tais siste-
mas devem ser modelados de modo que (1) todas as partes envolvidas possam entender melhor

FIGURA 3.5

Desenvolvimento
dirigido a funcionalidades
[Coa99]
(com
permissão) Desenvolver

um
Modelo
Geral

Construir
uma

Lista de
Funcionalidades

Planejar
por

Funcionalidades

Projetar
por

Funcionalidade

Desenvolver
por

Funcionalidade

(mais forma do
que conteúdo)

Uma lista de
funcionalidades
agrupadas em
conjuntos e em
áreas com afinidades
temáticas

Um plano de
desenvolvimento
Proprietários de classes
Proprietários de Conjuntos
de Funcionalidade

Um pacote de
projeto (sequências)

Função valor-cliente
completada

Fim Grupo 16

100 PARTE 1 O PROCESSO DE SOFTWARE

quais requisitos deverão ser atingidos, (2) o problema possa ser subdividido eficientemente
entre as pessoas que têm de solucioná-lo e (3) a qualidade possa ser avaliada enquanto se está
projetando e desenvolvendo o sistema.

Ao longo dos últimos 30 anos, uma ampla variedade de notações e métodos de modelagem
de engenharia de software tem sido proposta para análise e projeto (tanto no nı́vel de compo-
nente como de arquitetura). Esses métodos têm seus méritos, mas provaram ser difı́ceis de ser
aplicados e desafiadores para ser mantidos (ao longo de vários projetos). Parte do problema é o
“peso” dos métodos de modelagem. Com isso quero dizer o volume de notação exigido, o grau
de formalismo sugerido, o puro tamanho dos modelos para grandes projetos e a dificuldade
em manter o(s) modelo(s) à medida que ocorrem as mudanças. Contudo, o modelamento de
análise e projeto tem um benefı́cio substancial para grandes projetos — ainda que seja apenas
para torná-los intelectualmente gerenciáveis. Existe uma abordagem ágil para a modelagem de
engenharia de software que poderia fornecer uma alternativa?

No “The Official Agile Modeling Site”, Scott Ambler [Amb02a] descreve modelagem ágil (AM)
da seguinte maneira:

Modelagem ágil (AM) consiste em uma metodologia baseada na prática, voltada para o modelamento
e documentação de sistemas com base em software. Simplificando, modelagem ágil consiste em um
conjunto de valores, princı́pios e práticas voltados para a modelagem do software que pode ser apli-
cados em um projeto de desenvolvimento de software de forma leve e efetiva. Os modelos ágeis são
mais efetivos do que os tradicionais pelo fato de serem meramente bons, pois não têm a obrigação de
ser perfeitos.

Modelagem ágil adota todos os valores consistentes com o manifesto ágil. Sua filosofia reco-
nhece que uma equipe ágil deve ter a coragem de tomar decisões que possam causar a rejeição
de um projeto e sua refabricação. A equipe também deve ter humildade para reconhecer que
os profissionais de tecnologia não possuem todas as respostas e que os experts em negócios e
outros envolvidos devem ser respeitados e integrados ao processo.

Embora a AM sugira uma ampla gama de princı́pios de modelagem essenciais e suplementa-
res, os que tornam a AM única são [Amb02a]:

Modele com um objetivo. O desenvolvedor que utilizar o AM deve ter um objetivo antes
de criar o modelo (por exemplo, comunicar informações ao cliente ou ajudar a compreender
melhor algum aspecto do software). Uma vez identificado o objetivo, ficará mais óbvio o tipo
de notação a ser utilizado e o nı́vel de detalhamento necessário.

Use modelos múltiplos. Há muitos modelos e notações diferentes que podem ser usados
para descrever software. Somente um subconjunto é essencial para a maioria dos projetos. AM
sugere que, para propiciar o insight necessário, cada modelo deve apresentar um aspecto dife-
rente do sistema e somente aqueles que valorizem esses modelos para a audiência pretendida
devem ser usados.

Viajar leve. Conforme o trabalho de engenharia de software prossegue, conserve apenas
aqueles modelos que terão valor no longo prazo e despache o restante. Todo produto de
trabalho mantido deve sofrer manutenção à medida que as mudanças ocorram. Isso repre-
senta trabalho que retarda a equipe. Ambler [Amb02a] observa que “Toda vez que se opta por
manter um modelo, troca-se a agilidade pela conveniência de ter aquela informação acessı́-
vel para a equipe de uma forma abstrata (já que, potencialmente, aumenta a comunicação
dentro da equipe, assim como com os envolvidos no projeto)”.

Conteúdo é mais importante do que a representação. A modelagem deve transmitir
informação para sua audiência pretendida. Um modelo sintaticamente perfeito que trans-
mita pouco conteúdo útil não possui tanto valor como aquele com notações falhas que, no
entanto, fornece conteúdo valioso para seu público-alvo.

Tenha conhecimento, domı́nio dos modelos e das ferramentas que for utilizar.
Compreenda os pontos fortes e fracos de cada modelo e ferramenta usada para criá-lo.

WebRef

Informação
ampla sobre
a modelagem
ágil pode ser
encontrada
em: www.
agilemodeling.
com.

“Um dia, estava
em uma farmácia
tentando achar
um remédio para
resfriado... Não foi
fácil... Havia uma
parede inteira de
produtos. Fica-se lá
procurando: ‘Bem,
este tem ação
imediata, mas este
outro tem efeito
mais duradouro...’.
O que é mais
importante, o
presente ou o
futuro?”

Jerry Seinfeld

“Viajar leve” é uma
filosofia apropriada
para todo o trabalho
de engenharia de
software. Construa
apenas aqueles
modelos que forneçam
valor… Nem mais,
nem menos.

AVISO

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 101

Adapte localmente. A abordagem de modelagem deve ser adaptada às necessidades da
equipe ágil.

Um segmento de vulto da comunidade da engenharia de software adotou a linguagem de
modelagem unifi cada (Unifi ed Modeling Language, UML)16 como o método preferido para análi-
se representativa e para modelos de projeto. O Processo unifi cado (Capı́tulo 2) foi desenvolvido
para fornecer uma metodologia para a aplicação da UML. Scott Ambler [Amb06] desenvolveu
uma versão simplifi cada do UP que integra sua fi losofi a de modelagem ágil.

3.5.8 Processo Unificado Ágil (AUP)

O processo unifi cado ágil (Agile Unifi ed Process) adota uma fi losofi a “serial para o que é am-
plo” e “iterativa para o que é particular” [Amb06] no desenvolvimento de sistemas computadori-
zados. Adotando as atividades em fases UP clássicas — início, elaboração, construção e transição
—, AUP fornece uma camada serial (isto é, uma sequência linear de atividades de engenharia de
software) que capacita uma equipe a visualizar o fl uxo do processo geral de um projeto de soft-
ware. Entretanto, dentro de cada atividade, a equipe itera ou se repete para alcançar a agilidade
e para entregar incrementos de software signifi cativos para os usuários fi nais tão rapidamente
quanto possı́vel. Cada iteração AUP dirige-se para as seguintes atividades [Amb06]:

Modelagem. UÊ Representações UML do universo do negócio e do problema são criadas.
Entretanto, para permanecer ágil, esses modelos devem ser “sufi cientemente bons e ade-
quados” [Amb06] para possibilitar que a equipe prossiga.
Implementação. UÊ Os modelos são traduzidos para o código-fonte.
Teste. UÊ Como a XP, a equipe projeta e executa uma série de testes para descobrir erros e
assegurar que o código-fonte se ajuste aos requisitos.
Aplicação. UÊ Como a atividade de processo genérica discutida nos Capı́tulos 1 e 2, a apli-
cação neste contexto enfoca a entrega de um incremento de software e a aquisição de
feedback dos usuários fi nais.
Confi guração e gerenciamento de projeto. UÊ No contexto da AUP, gerenciamento de confi -
guração (Capı́tulo 22) refere-se a gerenciamento de alterações, de riscos e de controle de
qualquer artefato1617 persistente que sejam produzidos por uma equipe. Gerenciamento de
projeto traciona e controla o progresso de uma equipe e coordena suas atividades.18

16 Um breve tutorial sobre a UML é apresentado no Apêndice 1.
17 Artefato persistente é um modelo ou documento ou pacote de testes produzido pela equipe que será mantido por um perı́odo

de tempo indeterminado. Não será descartado, uma vez que o incremento de software seja entregue.
18 Ferramentas observadas aqui não significam um aval, mas antes, uma amostra de ferramentas nesta categoria. Na maioria

dos casos, os nomes das ferramentas são negociados por seus respectivos desenvolvedores.

Engenharia de requisitos

Objetivo: O objetivo das ferramentas de desenvol-
vimento ágil é auxiliar em um ou mais aspectos do

desenvolvimento ágil com ênfase em facilitar a geração rápida
de software operacional. Essas ferramentas também podem ser
usadas quando forem aplicados modelos de processos prescri-
tivos (Capı́tulo 2).
Mecânica: A mecânica das ferramentas varia. Em geral, con-
juntos de ferramentas ágeis englobam suporte automatizado
para o planejamento de projetos, desenvolvimento de caso
prático, coletânea de requisitos, projeto rápido, geração de
código e teste.
Ferramentas representativas:18

Nota: Por ser o desenvolvimento ágil um tópico importante,
a maioria dos vendedores de ferramentas de software

tende a vender ferramentas que dão suporte para a
abordagem ágil. As ferramentas aqui observadas têm
caracterı́sticas que as tornam particularmente úteis para
projetos ágeis.

OnTime, desenvolvida pela Axosoft (www.axosoft.com),
fornece suporte para gerenciamento de processo ágil
para uma variedade de atividades técnicas dentro do
processo.

Ideogramic UML, desenvolvida pela Ideogramic (www.ideo
gramic.com), é um conjunto de ferramentas UML desen-
volvido para uso em processo ágil.

Together Tool Set, distribuı́da pela Borland (www.borland.
com), fornece uma mala de ferramentas que dão suporte
para muitas atividades técnicas na XP e em outros proces-
sos ágeis.

FERRAMENTAS DO SOFTWARE

102 PARTE 1 O PROCESSO DE SOFTWARE

Gerenciamento do ambiente. UÊ Coordena a infraestrutura de processos que inclui padrões,
ferramentas e outras tecnologias de suporte disponı́veis para a equipe.

Embora o AUP possua conexões históricas e técnicas com a linguagem de modelagem uni-
ficada, é importante notar que a modelagem UML pode ser usado em conjunto com quaisquer
modelos de processos ágeis descritos na Seção 3.5.

UM CONJUNTO DE FERRAMENTA S PARA O PROCESSO ÁGIL

Alguns proponentes da filosofia ágil argumentam que as ferramentas de software automati-
zadas (por exemplo, ferramentas para projetos) deveriam ser vistas como um suplemento menor
para as atividades, e não como pivô para o sucesso da equipe. Entretanto, Alistair Cockburn
[Coc04] sugere que ferramentas podem gerar um benefı́cio e que “equipes ágeis enfatizam o
uso de ferramentas que permitam o fluxo rápido de compreensão. Algumas dessas ferramentas
são sociais, iniciando-se até no estágio de contratação de pessoal. Algumas são tecnológicas,
auxiliando equipes distribuı́das a simular sua presença fı́sica. Muitas são fı́sicas, permitindo sua
manipulação em workshops”.

Pelo fato de que contratar as pessoas certas, ter a colaboração da equipe, manter a comuni-
cação com os envolvidos e conseguir gerenciar de forma indireta constituı́rem elementos-chave
em praticamente todos os modelos de processos ágeis, Cockburn afirma que “ferramentas”
destinadas a esses itens são fatores crı́ticos para a agilidade. Por exemplo, uma “ferramenta”
alugada pode vir a ser um requisito para ter um membro de equipe de prospecção destinado a
despender algumas poucas horas em programação em dupla, com um membro já existente da
equipe. O “encaixe” pode ser avaliado imediatamente.

“Ferramentas” voltadas para a comunicação e para a colaboração são, em geral, de tecno-
logia de base e incorporam qualquer mecanismo (“proximidade fı́sica, quadros brancos, papéis
para pôster, fichas e lembretes adesivos” [Coc04]) que fornece informações e coordenação entre
desenvolvedores. A comunicação ativa é obtida por meio de dinâmicas de grupo (por exemplo,
programação em dupla), enquanto a comunicação passiva é obtida através dos “irradiadores
de informações” (por exemplo, um display de um painel fixo que apresente o status geral dos
diferentes componentes de um incremento). As ferramentas de gerenciamento de projeto não
enfatizam tanto o diagrama de Gantt e o realoca com quadros de valores ganhos ou “gráficos
de testes criados e cruzados com os anteriores... Outras ferramentas ágeis são utilizadas para
otimizar o ambiente no qual a equipe ágil trabalha (por exemplo, mais áreas eficientes de en-
contro), também para ampliar a cultura da equipe por meio de incentivos para interações sociais
(por exemplo, equipes alocadas juntas), para dispositivos fı́sicos (por exemplo, lousas eletrôni-
cas) e para ampliação (por exemplo, programação em dupla ou janela de tempo)” [Coc04].

Quaisquer dessas coisas são ferramentas? Serão, caso facilitem o trabalho desenvolvido por
um membro da equipe ágil e venham a aprimorar a qualidade do produto final.

RESUMO

Em uma economia moderna, as condições de mercado mudam rapidamente, tanto o clien-
te quanto o usuário final devem evoluir e novos desafios competitivos surgem sem aviso. Os
desenvolvedores têm de assumir uma abordagem de engenharia de software para permitir que
permaneçam ágeis — definindo processos que sejam manipuláveis, adaptáveis, sem excessos,
somente com o conteúdo essencial que possa adequar-se às necessidades do moderno mundo
de negócios.

Uma filosofia ágil para a engenharia de software enfatiza quatro elementos-chave: a im-
portância das equipes que se auto-organizam, que tenham controle sobre o trabalho por elas
realizado, sobre a comunicação e sobre a colaboração entre os membros da equipe e entre os

3.6

3.7

O “conjunto de
ferramentas” que
suporta os processos
ágeis focaliza mais
as questões pessoais
do que as questões
tecnológicas.

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 103

desenvolvedores e seus clientes; o reconhecimento de que as mudanças representam oportuni-
dades e ênfase na entrega rápida do software para satisfazer o cliente.

A Extreme Programming (XP) é o processo ágil mais amplamente utilizado. Organizada em
quatro atividades metodológicas, planejamento, projeto, codificação e testes, a XP sugere um
número de técnicas poderosas e inovadoras que possibilitam a uma equipe ágil criar versões de
software frequentemente, propiciando recursos e funcionalidade estabelecidos anteriormente,
e, então, priorizando os envolvidos.

Outros modelos de processos ágeis também enfatizam a colaboração humana e a auto-
-organização das equipes, mas definem suas próprias atividades metodológicas e selecionam
diferentes pontos de ênfase. Por exemplo, ASD usa um processo iterativo que incorpora um
planejamento cı́clico iterativo, métodos de levantamento de requisitos relativamente rigorosos,
e um ciclo de desenvolvimento iterativo que incorpora grupos focados nos clientes e revisões
técnicas formais como mecanismos de feedback em tempo real. O Scrum enfatiza o uso de um
conjunto de padrões de software que se mostrou efetivo para projetos com cronogramas aper-
tados, requisitos mutáveis e aspectos crı́ticos de negócio. Cada padrão de processo define um
conjunto de tarefas de desenvolvimento e permite à equipe Scrum construir um processo que
se adapta às necessidades do projeto. O método de desenvolvimento de sistemas dinâmicos
(DSDM) defende o uso de um cronograma de tempos definidos (janela de tempo) e sugere que
apenas o trabalho suficiente seja requisitado para cada incremento de software para facilitar o
movimento ao incremento seguinte. Crystal é uma famı́lia de modelos de processos ágeis que
podem ser desenvolvidos para uma caracterı́stica especı́fica de um projeto.

O desenvolvimento dirigido a funcionalidades (FDD) é ligeiramente mais “formal” que os ou-
tros métodos, mas ainda mantém agilidade ao focar a equipe do projeto no desenvolvimento de
funcionalidades — validadas pelo cliente que possam ser implementadas em duas semanas ou
menos. O desenvolvimento de software enxuto (LSD) adaptou os princı́pios de uma fabricação
enxuta para o mundo da engenharia de software. A modelagem ágil (AM) afirma que modelagem
é essencial para todos os sistemas, mas a complexidade, tipo e tamanhos de um modelo devem
ser balizados pelo software a ser construı́do. O processo unificado ágil (AUP) adota a filosofia
de “serial para o que é amplo” e “iterativa para o que é particular” para o desenvolvimento de
software.

PROBLEMA S E PONTOS A PONDERAR

3.1. Releia “The Manifesto for Agile Software Development” no inı́cio deste capı́tulo. Você
consegue exemplificar uma situação em que um ou mais dos quatro “valores” poderiam levar
a equipe a ter problemas?

3.2. Descreva agilidade (para projetos de software) com suas próprias palavras.

3.3. Por que um processo iterativo facilita o gerenciamento de mudanças? Todos os pro-
cessos ágeis discutidos neste capı́tulo são iterativos? É possı́vel completar um projeto com
apenas uma iteração e ainda assim permanecer ágil? Justifique suas respostas.

3.4. Cada um dos processos ágeis poderia ser descrito usando-se as atividades estruturais
genéricas citadas no Capı́tulo 2? Construa uma tabela que associe as atividades genéricas às
atividades definidas para cada processo ágil.

3.5. Tente elaborar mais um “princı́pio de agilidade” que ajudaria uma equipe de engenharia
de software a se tornar mais manobrável.

3.6. Escolha um princı́pio de agilidade citado na Seção 3.3.1 e tente determinar se cada um
dos modelos de processos apresentados neste capı́tulo demonstra o princı́pio. [Nota: Apre-
sentei apenas uma visão geral desses modelos de processos; portanto, talvez não seja pos-
sı́vel determinar se determinado princı́pio foi ou não tratado por um ou mais dos modelos, a
menos que você pesquise mais a respeito (o que não é exigido para o presente problema).

104 PARTE 1 O PROCESSO DE SOFTWARE

3.7. Por que os requisitos mudam tanto? Afinal de contas, as pessoas não sabem o que elas
querem?

3.8. A maior parte dos modelos de processos ágeis recomenda comunicação cara a cara.
Mesmo assim, hoje em dia os membros de uma equipe de software e seus clientes podem
estar geograficamente separados uns dos outros. Você acredita que isso implique que a se-
paração geográfica seja algo a ser evitado? Você é capaz de imaginar maneiras para superar
esse problema?

3.9. Escreva uma história de usuário XP que descreva o recurso “sites favoritos” ou “book-
marks” disponı́vel na maioria dos navegadores para Web.

3.10. O que é uma solução pontual na XP?

3.11. Descreva com suas próprias palavras os conceitos de refabricação e programação em
dupla da XP.

3.12. Leia um pouco mais a respeito e descreva o que é uma janela de tempo. Como isso aju-
da uma equipe ASD na entrega de incrementos de software em um curto perı́odo de tempo?

3.13. A regra dos 80% do DSDM e a abordagem de janelas de tempo definida para o ASD
alcançam os mesmos resultados?

3.14. Usando a planilha de padrões de processos apresentada no Capı́tulo 2, desenvolva um
padrão de processo para qualquer um dos padrões Scrum da Seção 3.5.2.

3.15. Por que o Crystal é considerado uma famı́lia de métodos ágeis?

3.16. Usando o gabarito de recursos FDD descrito na Seção 3.5.5, defina um conjunto de
recursos para um navegador Web. Agora, desenvolva vários recursos para o conjunto de re-
cursos.

3.17. Visite “The Official Agile Modeling Site” e faça uma lista completa de todos os princı́-
pios básicos e complementares do AM.

3.18. O conjunto de ferramentas proposto na Seção 3.6 oferece suporte a muitos dos aspec-
tos “menos prioritários” dos métodos ágeis. Como a comunicação é tão importante, reco-
mende um conjunto de ferramentas real que poderia ser usado para melhorar a comunicação
entre os interessados de uma equipe ágil.

LEITURA S E FONTES DE INFORMAÇÃO COMPLEMENTARES

A filosofia geral e os princı́pios subjacentes do desenvolvimento de software ágil são con-
siderados em profundidade em muitos dos livros citados neste capı́tulo. Além destes, livros
como os de Shaw e Warden (The Art of Agile Development, O’Reilly Media, Inc., 2008), Hunt
(Agile Software Building, Springer, 2005) e Carmichael e Haywood (Better Software Faster,
Prentice-Hall, 2002) trazem discussões interessantes sobre o tema. Aguanno (Managing Agile
Projects, Multi-Media Publications, 2005), Highsmith (Agile Project Management: Creating
Innovative Products, Addison-Wesley, 2004) e Larman (Agile and Iterative Development: A
Manager’s Guide, Addison-Wesley, 2003) apresentam uma visão geral sobre gerenciamento
e consideram as questões envolvidas no gerenciamento de projetos. Highsmith (Agile Soft-
ware Development Ecosystems, Addison-Wesley, 2002) retrata uma pesquisa de princı́pios,
processos e práticas ágeis. Uma discussão que vale a pena sobre o delicado equilı́brio entre
agilidade e disciplina é fornecida por Booch e seus colegas (Balancing Agility and Discipline,
Addison-Wesley, 2004).

Martin (Clean Code: A Handbook of Agile Software Craftsmanship, Prentice-Hall, 2009)
enumera os princı́pios, padrões e práticas necessários para desenvolver “código limpo” em
um ambiente de engenharia de software ágil. Leffingwell (Scaling Software Agility: Best Prac-
tices for Large Enterprises, Addison-Wesley, 2007) discute estratégias para dar maior corpo às
práticas ágeis para poderem ser usadas em grandes projetos. Lippert e Rook (Refactoring in
Large Software Projects: Performing Complex Restructurings Successfully,Wiley, 2006) discu-
tem o uso da refabricação quando aplicada a sistemas grandes e complexos.

CAPÍTULO 3 DESENVOLVIMENTO ÁGIL 105

Stamelos e Sfetsos (Agile Software Development Quality Assurance, IGI Global, 2007) tra-
zem técnicas SQA que estão em conformidade com a filosofia ágil.

Foram escritos dezenas de livros sobre Extreme Programming ao longo da última déca-
da. Beck (Extreme Programming Explained: Embrace Change, 2. ed., Addison-Wesley, 2004)
ainda é o tratado de maior autoridade sobre o tema. Além desse, Jeffries e seus colegas
(Extreme Programming Installed, Addison-Wesley, 2000), Succi e Marchesi (Extreme Program-
ming Examined, Addison-Wesley, 2001), Newkirk e Martin (Extreme Programming in Prac-
tice, Addison-Wesley, 2001), bem como Auer e seus colegas (Extreme Programming Applied:
Play to Win, Addison-Wesley, 2001), fornecem uma discussão básica da XP juntamente com
uma orientação sobre como melhor aplicá-la. McBreen (Questioning Extreme Programming,
Addison-Wesley, 2003) adota uma visão crı́tica em relação à XP, definindo quando e onde ela é
apropriada. Uma análise aprofundada da programação em dupla é apresentada por McBreen
(Pair Programming Illuminated, Addison-Wesley, 2003).

A ASD é tratada em profundidade por Highsmith [Hig00]. Schwaber (The Enterprise and
Scrum, Microsoft Press, 2007) discute o uso do Scrum para projetos que possuem um grande
impacto sobre as empresas. Os detalhes práticos do Scrum são debatidos por Schwaber e
Beedle (Agile Software Development with SCRUM, Prentice-Hall, 2001). Tratados úteis sobre o
DSDM foram escritos pelo DSDM Consortium (DSDM: Business Focused Development, 2. ed.,
Pearson Education, 2003) e Stapleton (DSDM: The Method in Practice, Addison-Wesley, 1997).
Cockburn (Crystal Clear, Addison-Wesley, 2005) traz uma excelente visão geral da famı́lia
Crystal de processos. Palmer e Felsing [Pal02] apresentam um tratado detalhado acerca do
FDD. Carmichael e Haywood (Better Software Faster, Prentice-Hall, 2002) é mais um tratado
útil sobre o FDD que inclui uma jornada passo a passo através da mecânica do processo.
Poppendieck e Poppendieck (Lean Development: An Agile Toolkit for Software Development
Managers, Addison-Wesley, 2003) dão diretrizes para gerenciar e controlar projetos ágeis.
Ambler e Jeffries (Agile Modeling, Wiley, 2002) discutem a AM com certa profundidade.

Uma grande variedade de fontes de informação sobre desenvolvimento de software ágil
está disponı́vel na Internet. Uma lista atualizada de referências na Web relevantes ao proces-
so ágil pode ser encontrada no site www.mhhe.com/engcs/compsci/pressman/professional/
olc/ser.htm.

