CONCEITOS-
-CHAVE
agilidade 82
Crystal.......... 97
desenvolvimento

de software
adaptativo 94

desenvolvimento de
software enxuto

Extreme Programming
- XP (programacdo

extrema) 87
1 Doooocooo0o00d 98
histérias. 89
processo agil. 85
drocesso unificado

agil 101
processo XP 89
programaciio em
duplas 88

O que é? A engenharia de software
1200 [e): 3N V. W 4gil combina filosofia com um conjunto
de principios de desenvolvimento. A filo-
sofia defende a satisfacdo do cliente e a

CAPITULO

DESENVOLVIMENTO AGIL

Grupo 01

m 2001, Kent Beck e outros dezesseis renomados desenvolvedores, autores e con-

sultores da area de software [BecOla] (batizados de “Agile Alliance”- “Alianca dos

Ageis”) assinaram o “Manifesto para o Desenvolvimento Agil de Software” (“Mani-
festo for Agile Software Development”), que se inicia da seguinte maneira:

Desenvolvendo e ajudando outros a desenvolver software, estamos desvendando formas melho-
res de desenvolvimento. Por meio deste trabalho passamos a valorizar:

Individuos e interagdes acima de processos e ferramentas
Software operacional acima de documentacao completa
Colaboragao dos clientes acima de negociagao contratual

Respostas a mudangas acima de seguir um plano

Ou seja, embora haja valor nos itens a direita, valorizaremos os da esquerda mais ainda.

Normalmente, um manifesto € associado a um movimento politico emergente: atacan-
do a velha guarda e sugerindo uma mudangca revolucionaria (espera-se que para melhor).
De certa forma, € exatamente do que trata o desenvolvimento agil.

Embora as ideias basicas que norteiam o desenvolvimento agil tenham estado conosco
por muitos anos, s ha menos de duas décadas que se consolidaram como um “movimento”.

classes de software e para certos fipos de projetos,
e tem se mostrado capaz de entregar sistemas
corretos rapidamente.

Quais s@o as etapas envolvidas? O desenvol-

enfrega de incremental prévio; equipes de projeto
pequenas e altamente motivadas; métodos infor-
mais; artefato de engenharia de software minimos
e, acima de fudo, simplicidade no desenvolvimen-
to geral. Os principios de desenvolvimento priori-
zam a enfrega mais que andlise e projeto (embora
essas atividades ndo sejam desencorajadas); tam-
bém priorizam a comunicacdo ativa e continua
entre desenvolvedores e clientes.

Quem realiza? Os engenheiros de software e
outros envolvidos no projeto (gerentes, clientes,
usudrios finais) trabalham conjuntamente em uma
equipe agil — uma equipe que se auto-organiza
e que confrola seu préprio destino. Uma equipe
agil acelera a comunicacgdo e a colaboragédo entre
todos os participantes (que estdo a seu servico).

Por que é importante? O moderno ambiente dos
sistemas e dos produtos da drea é acelerado e
estd em constante mudanga. A engenharia de soft-
ware dgil constitui uma razodavel alternativa para
a engenharia convencional voltada para certas

vimento agil poderia ser mais bem denominado
“engenharia de software flexivel”. As atividades
metodolégicas bésicas permanecem: comunica-
¢do, planejamento, modelagem, construgdo e
emprego. Entretanto, estas se transformam em
um conjunto de tarefas minimas que impulsiona a
equipe para o desenvolvimento e para a entrega
(pode-se levantar a questdo de que isso é feito em
detrimento da andlise do problema e do projeto
de solugdes).

Qual é o artefato? Tanfo o cliente como o enge-

nheiro t8m o mesmo parecer: o Unico artefato
realmente importante consiste em um “incremento
de software” operacional que seja entregue, ade-
quadamente, na data combinada.

Como garantir que o trabalho foi realizado

corretamente? Se a equipe d&gil concordar
que o processo funciona e essa equipe produz
incrementos de software passiveis de entrega e
que satisfacam o cliente, entdo, o trabalho esté
correto.

81

82

retrabalho87
SCUM. .vvuen. 95

velocidade
de projeto.86

XP Industrial. . . 91

“Agilidade: 1,
todo o resto: 0.”

Tom DeMarco

Grupo 03

3.1

PARTE 1 O PROCESSO DE SOFTWARE

Grupo 02
Em esséncia, métodos ageis' se desenvolveram em um esfor¢o para sanar fraquezas reais e
perceptiveis da engenharia de software convencional. O desenvolvimento agil oferece beneficios
importantes, no entanto, ndo ¢ indicado para todos os projetos, produtos, pessoas € situacoes.
Também nao € a antitese da pratica de engenharia de software consistente e pode ser aplicado
como uma filosofia geral para todos os trabalhos de software.

Na economia moderna € frequentemente dificil ou impossivel prever como um sistema com-
putacional (por exemplo, uma aplicacao baseada na Web) ira evoluir com o tempo. As condicoes
de mercado mudam rapidamente, as necessidades dos usuarios finais se alteram e novas ame-
acas competitivas emergem sem aviso. Em muitas situagdes, nao se conseguira definir com-
pletamente requisitos antes que se inicie o projeto. E preciso ser agil o suficiente para dar uma
resposta ao ambiente de fluido negocios.

Fluidez implica mudancas, e mudancas sdo caras. Particularmente, se forem sem controle e
mal gerenciadas. Uma das caracteristicas mais convincentes da abordagem agil € sua habilidade
de reduzir os custos da mudanca ao longo de todo o processo de software.

Isso significa que o reconhecimento dos desafios apresentados pela moderna realidade faz
com que se descartem valiosos principios da engenharia de software, conceitos, métodos e
ferramentas? Absolutamente nao! Como todas as disciplinas de engenharia, a engenharia de
software continua a evoluir, podendo ser adaptada facilmente aos desafios apresentados pela
demanda por agilidade.

Em um texto que nos leva a reflexdao sobre desenvolvimento de software agil, Alistair Cock-
burn [Coc02] argumenta que o modelo de processo prescritivo, apresentado no Capitulo 2, tem
uma falha essencial: esquece das fragilidades das pessoas que desenvolvem o software. Os en-
genheiros de software nao sao robos. Eles apresentam grande variacao nos estilos de trabalho;
diferencas significativas no nivel de habilidade, criatividade, organizacao, consisténcia e espon-
taneidade. Alguns se comunicam bem na forma escrita, outros nao. Cockburn afirma que os
modelos de processos podem “lidar com as fraquezas comuns das pessoas com disciplina e/ou
tolerancia” e que a maioria dos modelos de processos prescritivos opta por disciplina. Segundo
ele: “Como a consisténcia nas agoes € uma fraqueza humana, as metodologias com disciplina
elevada sao frageis”.

Para que funcionem, os modelos de processos devem fornecer um mecanismo realista que
estimule a disciplina necessaria ou, entdo, devem ter caracteristicas que apresentem “toleran-
cia” com as pessoas que realizam trabalhos de engenharia de software. Invariavelmente, pra-
ticas tolerantes sao mais facilmente adotadas e sustentadas pelas pessoas envolvidas, porém
(como o proprio Cockburn admite) podem ser menos produtivas. Como a maioria das coisas na
vida, deve-se considerar os pros e os contras.

O eUE E AGILIDADE?

No contexto da engenharia de software, o que € agilidade? Ivar Jacobson [Jac02a] apresenta
uma util discussao:

Atualmente, agilidade tornou-se a palavra da moda quando se descreve um moderno processo de soft-
ware. Todo mundo € agil. Uma equipe agil € aquela rapida e capaz de responder apropriadamente a mu-
dancas. Mudangas tém muito a ver com desenvolvimento de software. Mudangas no software que esta
sendo criado, mudangas nos membros da equipe, mudangas devido a novas tecnologias, mudangas de
todos os tipos que poderao ter um impacto no produto que estd em construcao ou no projeto que cria
o produto. Suporte para mudancas deve ser incorporado em tudo o que fazemos em software, algo
que abracamos porque € o coracdo € a alma do software. Uma equipe agil reconhece que o software é
desenvolvido por individuos trabalhando em equipes e que as habilidades dessas pessoas, suas capaci-
dades em colaborar estao no cerne do sucesso do projeto.

1 Os métodos ageis sao algumas vezes conhecidos como métodos light ou métodos enxutos (lean methods).

ﬂwso‘

Néo cometa o erro
de assumir que a
agilidade Ihe dard
licenca para abreviar
solugdes. Processo

6 um requisifo e
disciplina & essencial.

Grupo 04

3.2

CAPITULO 3 DESENVOLVIMENTO AGIL 83

Segundo Jacobson, a penetracao da mudanca € o principal condutor para a agilidade. Os
engenheiros de software devem ser rapidos em seus passos caso queiram assimilar as rapidas
mudancas que Jacobson descreve.

Porém, agilidade consiste em algo mais que uma resposta a mudanga, abrangendo a filosofia
proposta no manifesto citado no inicio deste capitulo. Ela incentiva a estruturagao € as atitudes
em equipe que tornam a comunicagao mais facil (entre membros da equipe, entre o pessoal
ligado a tecnologia e o pessoal da area comercial, entre os engenheiros de software e seus ge-
rentes). Enfatiza a entrega rapida do software operacional e diminui a importancia dos artefatos
intermediarios (nem sempre um bom negocio); assume o cliente como parte da equipe de de-
senvolvimento e trabalha para eliminar a atitude de “nos e eles”, que continua a invadir muitos
projetos de software; reconhece que o planejamento em um mundo incerto tem seus limites e
que o plano (roteiro) de projeto deve ser flexivel.

A agilidade pode ser aplicada a qualquer processo de software. Entretanto, para obté-la, € es-
sencial que seja projetado para que a equipe possa adaptar e alinhar (racionalizar) tarefas; possa
conduzir o planejamento compreendendo a fluidez de uma abordagem do desenvolvimento agil;
possa eliminar tudo, exceto os artefatos essenciais, conservando-os enxutos; € enfatize a estra-
tégia de entrega incremental, conseguindo entregar ao cliente, o mais rapidamente possivel, o
software operacional para o tipo de produto e ambiente operacional.

AGILIDADE E 0 CusTO DAS MUDANGCAS

“A agilidode &
dindmica, de
conteddo especifico,
abrange mudangas
agressivas e

¢ orientada ao
crescimento.”

Steven
Goldman et al.

A sabedoria convencional em desenvolvimento de software (baseada em décadas de expe-
riéncia) afirma que os custos de mudancgas aumentam de forma néao linear conforme o projeto
avanca (Figura 3.1, curva em preto continuo). E relativamente facil assimilar uma mudanca
quando uma equipe de software estd juntando requisitos (no inicio de um projeto). Pode-se
ter de alterar um detalhamento do uso, ampliar uma lista de fungoes ou editar uma especifi-
cagao por escrito. Os custos de tal trabalho sdao minimos e o tempo demandado nao afetara
negativamente o resultado do projeto. Mas se adiantarmos alguns meses, o que aconteceria? A
equipe esta em meio aos testes de validacdo (que ocorre relativamente no final do projeto) e um
importante interessado esta requisitando uma mudanga funcional de vulto. A mudanca requer
uma alteragao no projeto da arquitetura do software, o projeto e desenvolvimento de trés novos
componentes, modificacdes em outros cinco componentes, projeto de novos testes, € assim por
diante. Os custos crescem rapidamente e nao serao triviais o tempo e custos necessarios para
assegurar que a mudanca seja feita sem efeitos colaterais inesperados.

Custos de

alteragées como

uma fungédo do
tempo em

desenvolvimento

Custo de desenvolvimento

Progresso do cronograma de desenvolvimento

Grupo 05

84

PONTO-
-CHAVE

Um processo dgil reduz
0 custo das alteractes
porque o software &
entregue (liberado) de
forma incremental e as
alferagGes podem ser
mais bem confroladas
dentro de incrementais.

3.3

PARTE 1 O PROCESSO DE SOFTWARE

Os defensores da agilidade (por exemplo, [Bec00], [Amb04]) argumentam que um pro-
cesso agil bem elaborado “achata” o custo da curva de mudanca (Figura 3.1, curva em linha
verde), permitindo que uma equipe de software assimile as alteragoes, realizadas posterior-
mente em um projeto de software, sem um impacto significativo nos custos ou no tempo. Ja
foi mencionado que o processo agil envolve entregas incrementais. O custo das mudancas
¢é atenuado quando a entrega incremental é associada a outras praticas ageis, como tes-
tes continuos de unidades e programacao por pares, (discutida adiante neste capitulo). Ha
evidéncias [CocOla] que sugerem que se pode alcancar reducdo significativa nos custos
de alteragoes, embora haja um debate continuo sobre qual o nivel em que a curva de cus-
tos torna-se “achatada”.

O auE £ PROCESSO AGIL?

Uma vasta colegdo

de artigos sobre
processo dgil pode

ser encontrada em
www.aanpo.org/
arfides/index.

PONTO-
=-CHAVE

Embora processos
dgeis considerem as
alferacBes, examinar
as razdes para tais
mudancas ainda
continua sendo
importante.

Qualquer processo agil de software € caracterizado de uma forma que se relacione a uma
série de preceitos-chave [Fow02] acerca da maioria dos projetos de software:

1. E dificil afirmar antecipadamente quais requisitos de software irdo persistir e quais sofrerdao
alteracoes. E igualmente dificil prever de que maneira as prioridades do cliente sofrerao al-
teragoes conforme o projeto avanca.

2. Para muitos tipos de software, o projeto e a construcao sao “interconduzidos”. Ou seja, am-
bas as atividades devem ser realizadas em sequéncia (uma atras da outra), para que os mo-
delos de projeto sejam provados conforme sejam criados. E dificil prever quanto de trabalho
de projeto sera necessario antes que a sua construcao (desenvolvimento) seja implementada
para avaliar o projeto.

3. Andlise, projeto, construgao (desenvolvimento) e testes ndo sao tao previsiveis (do ponto de
vista de planejamento) quanto gostarfamos que fosse.

Dados esses trés preceitos, surge uma importante questao: Como criar um processo capaz
de administrar a imprevisibilidade? A resposta, conforme ja observado, consiste na adaptabi-
lidade de processo (para alterar rapidamente o projeto € as condigoes técnicas). Portanto, um
processo agil deve ser adaptdvel.

Mas adaptagao continua sem progressos que levem em frente o desenvolvimento realiza
muito pouco. Um processo agil de software deve adaptar incrementalmente. Para conseguir uma
adaptacao incremental, a equipe agil precisa de feedback do cliente (de modo que as adaptacoes
apropriadas possam ser feitas). Um efetivo catalisador para feedback de cliente € um protétipo
operacional ou parte de um sistema operacional. Dessa forma, deve se instituir uma estratégia
de desenvolvimento incremental. Os incrementos de software (prototipos executaveis ou partes
de um sistema operacional) devem ser entregues em curtos periodos de tempo, de modo que
as adaptacoes acompanhem o mesmo ritmo das mudancas (imprevisibilidade). Essa abordagem
iterativa capacita o cliente a avaliar o incremento de software regularmente, fornecer o feedback
necessario para a equipe de software e influenciar as adaptacoes de processo feitas para incluir
adequadamente o feedback.

3.3.1 Principios da agilidade
A Agile Alliance (veja [Agi03], [Fow01]) estabelece 12 principios de agilidade para quem qui-
ser ter agilidade:
1. Amaior prioridade € satisfazer o cliente por meio de entrega adiantada e continua de soft-
ware valioso.

2. Acolha bem os pedidos de alteracoes, mesmo atrasados no desenvolvimento. Os proces-
sos ageis se aproveitam das mudangas como uma vantagem competitiva na relacao com o
cliente.

ﬁwso‘

Software ativo é
importante, mas ndo
se deve esquecer

que fambém deve
apresentar uma

série de afributos de
qualidads, incluindo
confiabilidade,
usabilidade e facilidade

de manutencdo.

Grupo 06

ﬁwsoﬁ

Vocé ndo tem de
escolher entre
agilidade ou
engenharia de
software.

Em vez disso, defina
uma abordagem

de engenharia de
software que seja dgil.

CAPITULO 3 DESENVOLVIMENTO AGIL 85

3. Entregue software em funcionamento frequentemente, de algumas semanas para alguns
meses, dando preferéncia a intervalos mais curtos.

4. O pessoal comercial e os desenvolvedores devem trabalhar em conjunto diariamente ao
longo de todo o projeto.

5. Construa projetos em torno de individuos motivados. Dé a eles o ambiente e apoio neces-
sarios e confie neles para ter o trabalho feito.

6. O método mais eficiente e efetivo de transmitir informagoes para e dentro de uma equipe
de desenvolvimento é uma conversa aberta, de forma presencial

7. Software em funcionamento € a principal medida de progresso.

8. Os processos ageis promovem desenvolvimento sustentavel. Os proponentes, desenvolvedo-
res e usuarios devem estar capacitados para manter um ritmo constante indefinidamente.

9. Atengao continua para com a exceléncia técnica e para com bons projetos aumenta a agi-
lidade.

10. Simplicidade — a arte de maximizar o volume de trabalho nado efetuado — € essencial.
11. As melhores arquiteturas, requisitos e projetos emergem de equipes que se auto-organizam.

12. A intervalos regulares, a equipe se avalia para ver como tornar-se mais eficiente, entao
sintoniza e ajusta seu comportamento de acordo.

Nem todo modelo de processo agil aplica esses 12 principios atribuindo-lhes pesos iguais, e
alguns modelos preferem ignorar (ou pelo menos relevam) a importancia de um ou mais desses
principios. Entretanto, os principios definem um espirito dgil mantido em cada um dos modelos
de processo apresentados neste capitulo.

3.3.2 A politica do desenvolvimento agil

Ha debates consideraveis (algumas vezes acirrados) sobre os beneficios e a aplicabilidade
do desenvolvimento de software agil em contraposicao a processos de engenharia de software
mais convencionais. Jim Highsmith [Hig02a] (em tom jocoso) estabelece extremos ao caracte-
rizar o sentimento do grupo pro-agilidade (“os agilistas”). “Os metodologistas tradicionais sao
um bando de ‘pés na lama’ que preferem produzir documentacao sem falhas em vez de um
sistema que funcione e atenda as necessidades do negdcio.” Em um contraponto, ele apresenta
(mais uma vez, em tom jocoso) a posicao do grupo da engenharia de software tradicional: “Os
metodologistas de pouco peso, quer dizer, os metodologistas ‘ageis’ sdo um bando de hackers
pretensiosos que vao acabar tendo uma grande surpresa ao tentarem transformar seus brinque-
dinhos em software de porte empresarial”.

Como toda argumentagao sobre tecnologia de software, o debate sobre metodologia corre o
risco de descambar para uma guerra santa. Se for deflagrada uma guerra, a racionalidade desa-
parece e crengas, em vez de fatos, orientarao a tomada de decisao.

Ninguém € contra a agilidade. A verdadeira questao é: Qual a melhor maneira de atingi-
-la? Igualmente importante, como desenvolver software que atenda as necessidades atuais dos
clientes e que apresente caracteristicas de qualidade que permitirdo que seja estendido e am-
pliado para responder as necessidades dos clientes no longo prazo?

Nao ha respostas absolutas para nenhuma dessas questoes. Mesmo na propria escola agil, exis-
tem varios modelos de processos propostos (Secao 3.4), cada um com uma abordagem sutilmente
diferente a respeito do problema da agilidade. Em cada modelo existe um conjunto de “ideias” (0s
agilistas relutam em chama-las “tarefas de trabalho”) que representam um afastamento significativo
da engenharia de software tradicional. E, ainda assim, muitos conceitos ageis sao apenas adapta-
¢oes de bons conceitos da engenharia de software. Conclusao: pode-se ganhar muito considerando
o que ha de melhor nas duas escolas e praticamente nada denegrindo uma ou outra abordagem.

Caso se interesse mais, veja [Hig01], [Hig02a] e [DeMO02], em que € apresentado um sumario
interessante a respeito de outras questoes técnicas e politicas importantes.

86

“Muito da agilidade
dos métodos deriva
do fato de terem
suas hases no
conhecimento tcito
incorporado pela

€ na equipe, em
vez de registrar

por escrito tal
conhecimento em
planejomentos.”

Barry Boehm

PARTE 1 O PROCESSO DE SOFTWARE

3.3.3 Fatores humanos

Os defensores do desenvolvimento de software agil se esmeram para enfatizar a importancia
dos “fatores humanos”. Como afirmam Cockburn e Highsmith [CocOla], “O desenvolvimento
agil foca talentos e habilidades de individuos, moldando o processo de acordo com as pessoas
e as equipes especificas”. O ponto-chave nessa afirmacao € que o processo se amolda as neces-
sidades das pessoas e equipes, e nao o caminho inverso.?

Se os membros da equipe de software devem orientar as caracteristicas do processo que é
aplicado para construir software, deve existir um certo numero de tracos-chave entre as pessoas
de uma equipe &gil e a equipe em si:

Competéncia. No contexto do desenvolvimento agil (assim como no da engenharia de
software), a “competéncia” abrange talento inato, habilidades especificas relacionadas a
software e conhecimento generalizado do processo que a equipe escolheu para aplicar. Ha-
bilidade e conhecimento de processo podem e devem ser ensinados para todas as pessoas
que sejam membros de uma equipe agil.

@) Quiis Grupo07 Foco comum. Embora 0s membros de uma equipe agil possam realizar diferentes tarefas e

® sio as
caracteristicas-
-chave que devem
estar presentes
entre as pessoas
integrantes de
uma equipe
de software
eficiente?

“0 que & visto como
razoavelmente
suficiente por uma
equipe pode ser
avaliado como mais
do que suficiente

ou insuficiente por
uma outra equipe.”

Alistair
Cockburn

PONTO-
-CHAVE

Uma equipe auto-
-organizada- estd no
controle do trabatho

estabelece seus

¢ define planos para
cumprios.

que realiza. A equipe

proprios compromissos

tragam diferentes habilidades para o projeto, todos devem estar focados em um unico objetivo
— entregar um incremento de software funcionando ao cliente, dentro do prazo prometido.
Para alcangar essa meta, a equipe também ira focar em adaptagdes continuas (pequenas e
grandes) que fardo com que o processo se ajuste as necessidades da equipe.

Colaboracao. Engenharia de software (independentemente do processo) trata de avalia-
¢ao, analise e uso de informacoes comunicadas a equipe de software; criar informagoes que
ajudarao todos os envolvidos a compreender o trabalho da equipe e a construir informagoes
(software para computadores € bancos de dados relevantes) que fornecam valor de negocio
para o cliente. Para realizar essas tarefas, os membros da equipe devem colaborar — entre si
e com todos os demais envolvidos.

Habilidade na tomada de decisao. Qualquer boa equipe de software (até mesmo as
equipes ageis) deve ter liberdade para controlar seu proprio destino. Isso implica que seja
dada autonomia a equipe — autoridade na tomada de decisdo, tanto em assuntos técnicos
como de projeto.

Habilidade de solucéio de problemas confusos. Os gerentes de software devem re-
conhecer que a equipe agil tera de lidar continuamente com a ambiguidade e que sera con-
tinuamente atingida por mudangas. Em alguns casos, a equipe tem de aceitar o fato de
que o problema que eles estao solucionando hoje talvez ndo seja o problema que necessita
ser solucionado amanha. Entretanto, licoes aprendidas de qualquer atividade de solucao
de problemas (inclusive aquelas que resolvem o problema errado) podem ser, futuramente,
benéficas para a equipe no projeto.

Confianca mutua e respeito. A equipe agil deve tornar-se uma equipe tal qual a que
DeMarco e Lister [DeM98] denominam de equipe “consistente” (Capitulo 24). Uma equipe
consistente demonstra a confianga € o respeito necessarios para torna-la “tao fortemente
unida que o todo fica maior do que a soma das partes”. [DeM98]

Auto-organizacao. No contexto do desenvolvimento agil, a auto-organizacao implica trés
fatores: (1) a equipe agil se organiza para o trabalho a ser feito, (2) a equipe organiza o pro-
cesso para melhor se adequar ao seu ambiente local, (3) a equipe organiza o cronograma
de trabalho para melhor cumprir a entrega do incremento de software. A auto-organizacao
possui uma série de beneficios técnicos, porém, mais importante, € o fato de servir para
melhorar a colaboracao e levantar o moral da equipe. Em esséncia, a equipe faz seu proprio

2 As organizacoes de engenharia de software bem-sucedidas reconhecem essa realidade independentemente do modelo de
processos por elas escolhido.

Grupo 08

3.4

CAPITULO 3 DESENVOLVIMENTO AGIL 87

gerenciamento. Ken Schwaber [Sch02] menciona tais caracteristicas ao escrever: “A equipe
seleciona quanto trabalho acredita ser capaz de realizar dentro da iteracao e se compromete
com trabalho. Nada desmotiva tanto uma equipe como um terceiro assumir compromissos
por ela. Nada motiva tanto uma equipe quanto aceitar a responsabilidade de cumprir com-
pletamente o prometido feito por ela propria”.

EXTREME PROGRAMMING — XP (PROGRAMAGCAO EXTREMA)

ﬁwso‘

Simplifigue sempre
que puder, mas
tenha ciéncia de que
um “refrabalho”
(refabricacdo,
redesenvolvimento)
continuo consegue
absorver tempo e
recursos significativos.

“AXP ¢ a resposta
para a pergunta:
‘Qual o minimo
possivel que se
pode realizar e
mesmo assim
desenvolver

um software
grandioso?’.”

Andnimo

Para ilustrar um processo agil de forma um pouco mais detalhada, segue uma visao geral de
Extreme Programming — XP (Programagao Extrema), a abordagem mais amplamente utilizada
para desenvolvimento de software agil. Embora os primeiros trabalhos sobre os conceitos e mé-
todos associados a XP tenham ocorrido durante o final dos anos 1980, o trabalho seminal sobre
o tema foi escrito por Kent Beck [BecO4a]. Mais recentemente, foi proposta uma variagao da XB
denominada Industrial XP (IXP) [Ker05]. A IXP refina a XP e visa o processo agil especificamente
para uso em grandes organizacoes.

3.4.1 Valores da XP

Beck [BecO4a] define um conjunto de cinco valores que estabelecem as bases para todo
trabalho realizado como parte da XP — comunicacao, simplicidade, feedback (realimentacao
ou retorno), coragem e respeito. Cada um desses valores € usado como um direcionador das
atividades, acoes e tarefas especificas da XP

Para conseguir a comunicagdo efetiva entre engenheiros de software e outros envolvidos (por
exemplo, estabelecer os fatores e funcoes necessarias para o software), a XP enfatiza a colabo-
racao estreita, embora informal (verbal), entre clientes e desenvolvedores, o estabelecimento de
metaforas eficazes® para comunicar conceitos importantes, feedback (realimentacao) continuo
e evitar documentacao volumosa como meio de comunicacao.

Para alcancar a simplicidade, a XP restringe os desenvolvedores a projetar apenas para as
necessidades imediatas, em vez de considerarem as necessidades futuras. O intuito é criar um
projeto simples que possa ser facilmente implementado em cddigo. Se o projeto tiver que ser
melhorado, ele podera ser refabricado* mais tarde.

O feedback provém de trés fontes: do proprio software implementado, do cliente e de outros
membros da equipe de software. Através da elaboracdo do projeto e da implementacao de uma
estratégia de testes eficaz (Capitulos 17 a 20), o software (via resultados de testes) propicia um
feedback para a equipe agil. A XP faz uso do teste de unidades como sua tatica de testes prima-
ria. A medida que cada classe é desenvolvida, a equipe desenvolve um teste de unidades para
exercitar cada operagao de acordo com sua funcionalidade especificada. A medida que um incre-
mento € entregue a um cliente, as histdrias de usudrios ou casos de uso (Capitulo 5) implementa-
dos pelo incremento sao usados como base para testes de aceitagao. O grau em que o software
implementa o produto, a fungao e o comportamento do caso em uso ¢ uma forma de feedback.
Por fim, conforme novas necessidades surgem como parte do planejamento iterativo, a equipe
da ao cliente um rapido feedback referente ao impacto nos custos € no cronograma.

Beck [BecO4a] afirma que a adogao estrita a certas praticas da XP exige coragem. Uma pa-
lavra melhor poderia ser disciplina. Por exemplo, frequentemente, ha uma pressao significativa
para a elaboracao do projeto pensando em futuros requisitos. A maioria das equipes de software
sucumbe, argumentando que “projetar para amanha” poupara tempo e esfor¢co no longo prazo.
Uma equipe XP agil deve ter disciplina (coragem) para projetar para hoje, reconhecendo que as

3 No contexto da XB uma metdfora ¢ “uma histéria que todos — clientes, programadores e gerentes — podem contar sobre

como o sistema funciona” [BecO4a].

4 Arefabricacao permite a um engenheiro de software aperfeicoar a estrutura interna de um projeto (ou codigo-fonte) sem al-
terar sua funcionalidade ou comportamento externos. Em esséncia, a refabricacao pode ser usada para melhorar a eficiéncia,
a legibilidade ou o desempenho de um projeto ou o c6digo que implementa um projeto.

88 PARTE 1 O PROCESSO DE SOFTWARE

necessidades futuras podem mudar dramaticamente exigindo, consequentemente, substancial
retrabalho em relacao ao projeto e ao codigo implementado.

Ao seguir cada um desses valores, a equipe agil inculca respeito entre seus membros, entre
outros envolvidos e os membros da equipe, ¢, indiretamente, para o proprio software. Conforme
conseguem entregar com sucesso incrementos de software, a equipe desenvolve cada vez mais
respeito pelo processo XP.

OG;“'” 3.4.2 O Processo XP
WebRef A Extreme Programming (programacao extrema) emprega uma abordagem orientada a ob-
T jetos (Apéndice 2) como seu paradigma de desenvolvimento preferido e envolve um conjunto
geral das “regras” de regras e praticas constantes no contexto de quatro atividades metodologicas: planejamento,
pora XP pode-ser projeto, codificacao e testes. A Figura 3.2 ilustra o processo XP e destaca alguns conceitos e
enconfrada em www.

tarefas-chave associados a cada uma das atividades metodoldgicas. As atividades-chave da XP

extremeprogramm .) , .
sao sintetizadas nos paragrafos a seguir.

ing.org/rules.html.
Planejamento. A atividade de planejamento (também denominada o jogo do planejamento) se
inicia com a atividade de ouvir — uma atividade de levantamento de requisitos que capacita os mem-
bros técnicos da equipe XP a entender o ambiente de negocios do software e possibilita que se con-
siga ter uma percepcao ampla sobre os resultados solicitados, fatores principais e funcionalidade
A atividade de “Ouvir” conduz a criagdo de um conjunto de “histérias” (também denomi-

& 0 que & nado historias de usudrios) que descreve o resultado, as caracteristicas e a funcionalidade re-
® yma quisitados para o software a ser construido. Cada histdria (similar aos casos de uso descritos
“historia” XP? no Capitulo 5) € escrita pelo cliente e ¢ colocada em uma ficha. O cliente atribui um valor (uma

prioridade) a histéria baseando-se no valor de negdcio global do recurso ou fun¢ao.®> Os mem-
bros da equipe XP avaliam entao cada historia e atribuem um custo — medido em semanas de
desenvolvimento — a ela. Se a histdria requerer, por estimativa, mais do que trés semanas de
desenvolvimento, € solicitado ao cliente para dividir a historia em historias menores € a atri-
buicdo de valor e custo ocorre novamente. E importante notar que podem ser escritas novas
histérias a qualquer momento.

O processo da projeto simples solugégs'pontuois
Extreme cartées CRC protétipos
Programming (XP) valores das histérias

de usudrios
critérios de teste de aceitacdo
plano de iteragdo

refabricacdo

programacdo em dupla

Versdo
incremento de software
velocidade de projeto registrada
(computadal)

teste de unidades
integracé@o continua

teste de aceitacdo

5 Ovalor de uma histéria também pode depender da presenca de uma outra histéria.

Um “jogo de
planejamento” XP
bastante inferessanfe
pode ser encontrado
em: ¢2.com/cgi/
wiki?planning
Game.

PONTO-
-CHAVE

A velocidode do
projefo & uma medida
sutil da produtividade
de uma equipe.

Grupo 10

ﬁwso‘

A XP tira a énfase da
importdncia do projeto.
Nem todos concordam.
De fato, hd ocasides
em que o projefo deve
ser enfatizado.

Técnicas de refabricagdo
¢ ferramentas podem
ser enconfradas em:
www.refactoring.
com.

PONTO-
-CHAVE

A refabricactio
aprimora a estrutura
interna de um projeto
(ou codigo-fonte)
sem alterar sua
funcionalidade ou
comportamento
exfernos.

CAPITULO 3 DESENVOLVIMENTO AGIL 89

Clientes e desenvolvedores trabalham juntos para decidir como agrupar historias para a
versao seguinte (o proximo incremento de software) a ser desenvolvida pela equipe XP. Conse-
guindo chegar a um compromisso bdsico (concordancia sobre quais histérias serdo incluidas,
data de entrega e outras questoes de projeto) para uma versao, a equipe XP ordena as historias
a ser desenvolvidas em uma das trés formas: (1) todas serao implementadas imediatamente (em
um prazo de poucas semanas), (2) as histérias de maior valor serao deslocadas para cima no
cronograma e implementadas primeiro ou (3) as historias de maior risco serao deslocadas para
cima no cronograma e implementadas primeiro.

Depois de a primeira versao do projeto (também denominada incremento de software) ter
sido entregue, a equipe XP calcula a velocidade do projeto. De forma simples, a velocidade do
projeto € o numero de historias de clientes implementadas durante a primeira versao. Assim, a
velocidade do projeto pode ser utilizada para (1) ajudar a estimar as datas de entrega € o crono-
grama para versoes subsequentes e (2) determinar se foi assumido um compromisso exagerado
para todas as historias ao longo de todo o projeto de desenvolvimento. Se ocorrer um exagero,
o conteudo das versoes ¢ modificado ou as datas finais de entrega sao alteradas.

Conforme o trabalho de desenvolvimento prossegue, o cliente pode acrescentar historias,
mudar o valor de uma existente, dividir algumas ou elimina-las. Em seguida, a equipe XP recon-
sidera todas as versoes remanescentes e modifica seus planos de acordo.

Projeto. O projeto XP segue rigorosamente o principio KIS (keep it simple, ou seja, preserve a
simplicidade). E preferivel sempre um projeto simples do que uma representacdo mais comple-
xa. Como acréscimo, o projeto oferece um guia de implementagao para uma historia a medida
que € escrita — nada mais, nada menos. O projeto de funcionalidade extra (pelo fato de o de-
senvolvedor supor que ela serd necessaria no futuro) é desencorajado.®

A XP encoraja o uso de cartdes CRC (Capitulo 7) como um mecanismo eficaz para pensar
sobre o software em um contexto orientado a objetos. Os cartdes CRC (classe-responsabilidade-
colaborador) identificam e organizam as classes orientadas a objetos’ relevantes para o incre-
mento de software corrente. A equipe XP conduz o exercicio de projeto usando um processo
similar ao descrito no Capitulo 8. Os cartdoes CRC sao o unico artefato de projeto produzidos
como parte do processo XP

Se um dificil problema de projeto for encontrado como parte do projeto de uma histéria, a XP
recomenda a criagdo imediata de um prototipo operacional dessa parte do projeto. Denominada
solugdo pontual, o protétipo do projeto € implementado e avaliado. O objetivo € reduzir o risco
para quando a verdadeira implementagao iniciar e validar as estimativas originais para a historia
contendo o problema de projeto.

Na secao anterior, foi feita a observacao de que a XP encoraja a refatoracdo — uma técnica
de construcao que também € um método para otimizacao de projetos. Fowler [Fow00] descreve
a refabricacao da seguinte maneira:

Refabricacdo é o processo de alteragdo de um sistema de software de tal forma que nao se altere o
comportamento externo do cédigo, mas se aprimore a estrutura interna. E uma forma disciplinada de
organizar cédigo [e modificar/simplificar o projeto interno] que minimiza as chances de introducédo de
bugs. Em resumo, ao se refabricar, se esta aperfeicoando o projeto de codificacdo depois de este ter
sido feito.

Como o projeto XP nao usa praticamente nenhuma notacao e produz poucos, se algum,
artefatos, além dos cartoes CRC e solugdes pontuais, o projeto € visto como algo transitorio
que pode e deve ser continuamente modificado conforme a construcao prossegue. O objetivo
da refabricacdo é controlar tais modificacoes sugerindo pequenas mudancgas de projeto “ca-
pazes de melhora-lo radicalmente” [Fow00]. Deve ser observado, no entanto, que o esfor¢o

6 Tais diretrizes de projeto deveriam ser seguidas em todos os métodos de engenharia de software, apesar de ocorrer situagoes
em que sofisticadas terminologia e notacao possam constituir obstaculo para a simplicidade.
7 Asclasses orientadas a objetos sao discutidas no Apéndice 2, no Capitulo 8 e ao longo da Parte 2 deste livro.

90

Grupo 11

Informagdes Gteis
sobre a XP podem ser
obfidas em www.
Xprogramming.
com.

& 0 que é
@' programaciio
em dupla?

ﬁwsos

Muitas equipes

de software sdio
constituidas por
individualistas. Deverd
haver empenho

para modificar fal
cultura, para que a
programacdo em dupla
funcione efetivamente.

& Como siio
@ ysados os
testes de unidade

na XP?

PONTO-
=-CHAVE

0s festes de aceitacio
da XP sio elaborados

com base nas histérias
de usudrios.

PARTE 1 O PROCESSO DE SOFTWARE

necessario para a refabricacdo pode aumentar dramaticamente a medida que o tamanho de
uma aplicagao cresca.

Um aspecto central na XP € o de que a elaboracao do projeto ocorre tanto antes como depois
de se ter iniciado a codificagao. Refabricacao significa que o “projetar” € realizado continua-
mente enquanto o sistema estiver em elaboracdo. Na realidade, a propria atividade de desenvol-

vimento guiara a equipe XP quanto a aprimoragao do projeto.

Codificacao. Depois de desenvolvidas as histdrias e o trabalho preliminar de elaboragao do
projeto ter sido feito, a equipe ndo passa para a codificacdo, mas sim, desenvolve uma série de
testes de unidades que exercitarao cada uma das historias a ser inclusas na versdo corrente
(incremento de software).® Uma vez criado o teste de unidades’, o desenvolvedor podera melhor
focar-se no que deve ser implementado para ser aprovado no teste. Nada estranho € adicionado
(KIS). Estando o codigo completo, este pode ser testado em unidade imediatamente, e, dessa
forma, prover, instantaneamente, feedback para os desenvolvedores.

Um conceito-chave na atividade de codificacao (¢ um dos mais discutidos aspectos da XP)
€ a programacgdo em dupla. A XP recomenda que duas pessoas trabalhem juntas em uma mes-
ma estacao de trabalho para criar c6digo para uma historia. Isso fornece um mecanismo para
resolucao de problemas em tempo real (duas cabecas normalmente funcionam melhor do que
uma) e garantia da qualidade em tempo real (o codigo € revisto a medida que ¢ criado). Ele
também mantém os desenvolvedores focados no problema em questao. Na pratica, cada pes-
soa assume um papel ligeiramente diferente. Por exemplo, uma pessoa poderia pensar nos de-
talhes de codificagao de determinada parte do projeto, enquanto outra assegura que padroes
de codificacado (uma parte exigida pela XP) sejam seguidos ou que o cddigo para a histéria
passara no teste de unidades desenvolvido para validacao do c6digo em relacao a historia.

Conforme a dupla de programadores completa o trabalho, o codigo que desenvolveram
¢ integrado ao trabalho de outros. Em alguns casos, isso é realizado diariamente por uma
equipe de integracdo. Em outros, a dupla de programadores ¢ responsavel pela integracao. A
estratégia de “integracao continua” ajuda a evitar problemas de compatibilidade e de inter-
faceamento, além de criar um ambiente “teste da fumaca” (Capitulo 17) que ajuda a revelar
erros precocemente.

Testes. Ja foi observado que a criacdo de testes de unidade, antes de comecar a codificacao, €
um elemento-chave da abordagem XP Os testes de unidade criados devem ser implementados
usando-se uma metodologia que os capacite a ser automatizados (assim, poderao ser executados
facil e repetidamente). Isso encoraja uma estratégia de testes de regressao (Capitulo 17), toda vez
em que o codigo for modificado (o que € frequente, dada a filosofia de refabricacao da XP).

Como os testes de unidades individuais sao organizados em um “conjunto de testes univer-
sal” [Wel99], os testes de integracao e validacao do sistema podem ocorrer diariamente. 1sso
da a equipe XP uma indicacdo continua do progresso e também permite langar alertas logo no
inicio, caso as coisas ndo andem bem. Wells [Wel99] afirma: “Corrigir pequenos problemas em
intervalos de poucas horas leva menos tempo do que corrigir problemas enormes proximo ao
prazo de entrega”.

Os testes de aceitagdo da XB também denominados testes de cliente, sao especificados pelo
cliente e mantém o foco nas caracteristicas e na funcionalidade do sistema total que sdo visiveis
e que podem ser revistas pelo cliente. Os testes de aceitacao sao obtidos de histérias de usua-
rios implementadas como parte de uma versao de software.

Fim Grupo 11

8 Essa abordagem é como conhecer as perguntas de uma prova antes de comecar a estudar. Torna o estudo muito mais facil,
permitindo que se concentre a atencao apenas nas perguntas que serao feitas.

9 O teste de unidades, discutido detalhadamente no Capitulo 17, concentra-se em um componente de software individual,
exercitando a interface, a estrutura de dados e a funcionalidade do componente, em uma tentativa de que se revelem erros
pertinentes ao componente.

& Que novas

@' praticas séio
acrescidas a XP
para elaborar a
IXP?

“Habilidade
consiste no que
se & capaz de
fazer. Motivaciio
determina o que
vocé faz. Afitude
determina qudo
bem vocé faz.”

Lou Holtz

CAPITULO 3 DESENVOLVIMENTO AGIL 91

3.4.3 Industrial XP

Joshua Kerievsky [Ker05] descreve a Industrial Extreme Programming (IXP) — programacao
extrema industrial — da seguinte maneira: “A IXP € uma evolucao organica da XP Ela € imbuida
do espirito minimalista, centrado no cliente e orientado a testes da XP. Difere principalmente da
XP original por sua maior inclusao do gerenciamento, por seu papel expandido para os clientes
e por suas praticas técnicas atualizadas”. A IXP incorpora seis novas praticas desenvolvidas para
ajudar a assegurar que um projeto XP funcione com éxito em empreendimentos significativos
em uma grande organizagao.

Avaliacao imediata. Antes do inicio de um projeto IXP a organizacdo deve realizar uma
avalia¢do imediata. A avaliacao verifica se (1) existe um ambiente de desenvolvimento apro-
priado para sustentar a IXP (2) a equipe sera composta por um conjunto apropriado de
interessados, (3) a organizacao possui um programa de qualidade diferenciado e suporta
continuo aperfeicoamento, (4) a cultura organizacional apoiaréa os novos valores de uma
equipe agil e (5) a comunidade de projeto ampliada sera composta apropriadamente.

Comunidade de projeto. A XP classica sugere que se aloquem as pessoas acertadas para
compor a equipe agil e garantir o sucesso. Isso implica pessoas da equipe bem treinadas,
adaptaveis e experientes e que tenham temperamento apropriado para contribuir para uma
equipe auto-organizada. Ao se aplicar a XP em um projeto importante de uma grande em-
presa, o conceito da “equipe” deve transformar-se no de comunidade. A comunidade pode
ter um tecnologo e clientes fundamentais para o sucesso de um projeto, assim como muitos
outros envolvidos (por exemplo, responsaveis juridicos, auditores do controle da qualidade,
representantes da area de producdo ou de categorias de vendas) que “frequentemente se
encontram na periferia de um projeto IXE mas que podem desempenhar importante papel
no projeto” [Ker05]. Na IXE os membros da comunidade devem ter papéis explicitamente
definidos e os mecanismos de comunicacao € de coordenacao relativos aos elementos da
comunidade devem estar determinados.

Mapeamento do projeto. A prépria equipe IXP avalia o projeto para determinar se este se
justifica em termos de negocios e se ira ultrapassar as metas e objetivos globais da organi-
zagdo. O mapeamento também examina o contexto do projeto para estabelecer como este
complementa, amplia ou substitui sistemas ou processos existentes.

Gerenciamento orientado a testes. Um projeto IXP requer critérios mensuraveis para
avaliar o estado do projeto e do progresso obtido até entdo. O gerenciamento orientado a
testes estabelece uma série de “destinos” mensuraveis [Ker05] e define mecanismos para
determinar se estes foram atingidos ou nao.

Retrospectivas. Uma equipe IXP conduz uma revisao técnica especializada (Capitulo 15) apds
a entrega de um incremento de software. Denominada retrospectiva, a revisao examina “itens,
eventos e licoes aprendidas” [Ker05] ao longo do processo de incremento de software e/ou do
desenvolvimento da versao completa do software. O objetivo é aprimorar o processo da IXP

Aprendizagem continua. Sendo a aprendizagem uma parte vital para o aperfeicoa-
mento continuo do processo, os membros da equipe XP sao encorajados (e possivelmente
incentivados) a aprender novos métodos € técnicas que possam conduzir a um produto de
melhor qualidade.

Somando-se as apresentadas, a IXP modifica uma série de praticas XP existentes. O desen-
volvimento orientado por histoérias (story-driven development, SDD) insiste que as histérias para
testes de aceitagao sejam escritas antes de gerar uma unica linha de codigo. O projeto orientado
por dominio (domain-driven design, DDD) é um aprimoramento do conceito “metafora de sis-
tema” usado na XP. O DDD [Eva03] sugere a criacao evolucionaria de um modelo de dominio
que “represente acuradamente como pensam os especialistas de determinado dominio dentro
de sua disciplina” [Ker05]. O emparelhamento amplia o conceito de programacao em dupla da

92

Grupo 12

) Quuis siio
@ dlguns

dos pontos que

conduzem a um

debate a respeito
da XP?

PARTE 1 O PROCESSO DE SOFTWARE

XP ao incluir gerentes e outros envolvidos. O intuito € ampliar o compartilhamento de conheci-
mentos entre os membros da equipe XP que possam nao estar diretamente envolvidos no desen-
volvimento técnico. A usabilidade iterativa desencoraja o projeto de interfaces de carregamento
frontal (front-loaded interface design), sendo a favor do projeto de usabilidade que evolui con-
forme os incrementos sejam entregues e a interagdo entre usuarios € o software seja estudada.

A IXP faz modificacdbes menores para outras praticas XP e redefine certos papéis € respon-
sabilidades para torna-los mais harmonizados com projetos importantes de organizacoes. Para
uma discussao mais ampla sobre a IXP visite http://industrialxp.org.

.4 O Debate XP

Todos os novos métodos e modelos de processos estimulam debates uteis e, em alguns ca-
sos, debates acalorados. A Extreme Programming provocou ambos. Em um livro interessante
que examina a eficacia da XP Stephens e Rosenberg [Ste03] argumentam que muitas praticas
XP valem a pena, mas outras foram superestimadas e algumas poucas sao problematicas. Os
autores sugerem que a codependéncia da pratica da XP representa sua forca e sua fraqueza.
Pelo fato de muitas organizacdes adotarem apenas um subconjunto de praticas XP, elas en-
fraquecem a eficacia de todo o processo. Seus defensores rebatem dizendo que a XP é aper-
feicoada continuamente e que muitos dos itens levantados pela critica tém sido acessados
conforme a pratica da XP ganha maturidade. Entre os itens que continuam a incomodar certos
criticos da XP estao:'°

e Volatilidade de requisitos. Pelo fato de o cliente ser um membro ativo da equipe XP, al-
teracoes de requisitos sao solicitadas informalmente. Como consequéncia, o escopo do
projeto pode mudar e trabalhos anteriores podem ter de vir a ser alterados, a fim de
acomodar as necessidades de entao. Seus defensores argumentam que isso acontece
independentemente do processo aplicado e que a XP oferece mecanismos para controlar
o surgimento incontrolado de novos escopos.

* Necessidades conflitantes de clientes. Projetos em quantidade possuem multiplos clien-
tes, cada um com seu proprio conjunto de necessidades. Na XP a propria equipe tem a
tarefa de assimilar as necessidades de diferentes clientes, um trabalho que pode estar
além de seu escopo de autoridade.

e Os requisitos sdo levantados informalmente. Historias de usuarios e testes de aceitacao
sao a Unica manifestacao explicita de requisitos da XP. Seus criticos argumentam que,
frequentemente, torna-se necessario um modelo ou especificacao mais formal para as-
segurar que omissoes, inconsisténcias e erros sejam descobertos antes que o sistema
seja construido. Seus defensores rebatem dizendo que a natureza mutante de requisitos
torna tais modelos e especificacdes obsoletos praticamente logo depois de terem sido
desenvolvidos.

* Falta de projeto formal. A XP tira a énfase da necessidade do projeto de arquitetura e, em
muitos casos, sugere que todos os tipos de projetos devam ser relativamente informais.
Seus criticos argumentam que em sistemas complexos deve-se enfatizar a elaboracao
do projeto para assegurar que a estrutura geral do software apresentara qualidade e
facilidade de manutencéo. Ja os defensores da XP sugerem que a natureza incremental
do processo XP limita a complexidade (a simplicidade € um valor fundamental) e, conse-
quentemente, reduz a necessidade de um projeto extenso.

Deve-se observar que todo processo de software tem suas falhas e que muitas organizacoes
de software usaram, com éxito, a XP. O segredo € reconhecer onde um processo pode apresentar
fraquezas e adapta-lo as necessidades especificas de sua organizagao.

Fim Grupo 12

10 Para uma visao detalhada de algumas criticas ponderadas feitas ao XP visite www.softwarereality.com/ExtremeProgramming.jsp.

CAPITULO 3 DESENVOLVIMENTO AGIL

CASASEGURA

Considerando o desenvolvimento de
software dgil
Cena: de Doug Miller.

Atores: Doug Miller, gerente de engenharia de software; Jamie
Lazar, membro da equipe de software; Vinod Raman, membro
da equipe de software.

Conversa:

(Batendo & porta, Jamie e Vinod adentram & sala de Doug)
Jamie: Doug, vocé tem um minuto?

Doug: Com certeza, Jamie, o que h&?

Jamie: Estivemos pensando a respeito da discuss@o sobre pro-
cessos, de ontem... Sabe, que processo vamos escolher para
este novo projeto CasaSegura.

Doug: E?

Vinod: Eu estava conversando com um amigo de uma outra
empresa e ele me falou sobre a Extreme Programming. E um
modelo de processo &gil... Ja ouviu falar?

Doug: Sim, algumas coisas boas, outras ruins.

Jamie: Bem, pareceu muito bom para nés. Permite que se de-
senvolva software realmente répido, usa algo chamado progra-
magdo em dupla para fazer checagens de qualidade em tempo
real... E bem legal, eu acho.

Doug: Realmente, apresenta um monte de ideias muito boas.
Gosto do conceito de programagdo em dupla, por exemplo, e
da ideia de que os envolvidos devam fazer parte da equipe.
Jamie: O qué2 Quer dizer que o pessoal de marketing traba-
lharé conosco na equipe de projeto?

3.5

93

Doug (confirmando com a cabeca): Eles sdo envolvidos,
ndo sdo?

Jamie: Jesus... Eles solicitardo alteragdes a cada cinco minutos.
Vinod: Nao necessariamente. Meu amigo me disse que existem
formas de se “abarcar” as mudangas durante um projeto XP.
Doug: Portanto, meus amigos, vocés acham que deveriamos
usar a XP?

Jamie: Definitivamente, vale considerar.

Doug: Eu concordo. E mesmo que optéssemos por um modelo in-
cremental como nossa abordagem, ndo h& nenhuma razéo para
ndo podermos incorporar muito do que a XP tem a oferecer.

Vinod: Doug, mas antes vocé disse “algumas coisas boas, ou-
tras ruins”. O que sGo as “coisas ruins”e

Doug: O que ndo me agrada é a maneira pela qual a XP dé
menos importdncia & andlise e ao projeto... Dizem algo como: a
codificagdo resume a agdo para construir um software.

(Os membros da equipe se entreolham e sorriem.)
Doug: Entdo vocés concordam com a abordagem XP2

Jamie (falando por ambos): Escrever codigo é o que fa-
zemos, chefel

Doug (rindo): E verdade, mas eu gostaria de vé-lo perdendo
um pouco menos de tempo codificando para depois recodificar
e dedicando um pouco mais de tempo analisando o que precisa
ser feito e projetando uma solucéo que funcione.

Vinod: Talvez possamos ter as duas coisas, agilidade com um
pouco de disciplina.

Doug: Acho que sim, Vinod. Na realidade, tenho certeza disso.

OuTrROSs MODELOS DE PROCESSOs AGEIs

Na histéria da engenharia de software ha dezenas de metodologias e descricoes de proces-

“Nossa profisstio
passa por
metodologias como
uma garofa de 14
anos passa por

roupas.” caminho histérico.!!

Stephen
Hawrysh e
Jim Ruprecht

sos, métodos e notacoes de modelagem, ferramentas e tecnologias obsoletas. Cada um atingiu
grande notoriedade e foi entdo ofuscado por algo novo e (supostamente) melhor. Com a intro-
ducdo de uma ampla gama de modelos de processos ageis — todos disputando por aceitacao
pela comunidade de desenvolvimento de software —, 0 movimento agil esta seguindo o mesmo

Conforme citado na ultima secao, o modelo mais amplamente utilizado de todos os modelos
de processos ageis € o da Extreme Programming (XP). Porém, muitos outros tém sido propostos
e encontram-se em uso no setor. Entre os mais comuns, temos:

* Desenvolvimento de software adaptativo (Adaptive Software Development, ASD)

* Scrum

e Método de desenvolvimento de sistemas dinamicos (Dynamic Systems Development

Method, DSDM)
* Crystal

11 Isso nao é algo ruim. Antes que um ou mais modelos ou métodos sejam aceitos como um padrao de fato, todos devem com-
petir para conquistar os coracoes e mentes dos engenheiros de software. Os “vencedores” evoluem e se transformam nas
melhores praticas, enquanto os “perdedores” desaparecem ou se fundem aos modelos vencedores.

94

Recursos Gteis para ASD
podem ser encontrados
em WWwW.
adaptivesd.com.

eAVISO‘

A colaboracdo efetiva
com seu cliente
ocorrerd somente

se vocé extinguir
quaisquer afitudes de
“nds e eles”.

PARTE 1 O PROCESSO DE SOFTWARE

* Desenvolvimento dirigido a Funcionalidades (Feature Drive Development, FDD)
* Desenvolvimento de software enxuto (Lean Software Development, LSD)

* Modelagem agil (Agile Modeling, AM)

* Processo unificado agil (Agile Unified Process, AUP)

Nas secOes seguintes, apresenta-se uma visao geral muito breve de cada um desses modelos
de processos ageis. E importante observar que todos estao em conformidade (em maior ou me-
nor grau) com o Manifesto for Agile Software Development e com 0s principios citados na Se¢ao
3.3.1. Para mais detalhes, veja as referéncias citadas em cada subsecdo ou, para uma pesquisa,
examine a entrada “agile software development” na Wikipedia.'?

3.5.1 Desenvolvimento de Software Adaptativo (ASD)

O desenvolvimento de software adaptativo (Adaptive Software Development) foi proposto por
Jim Highsmith [Hig00] como uma técnica para construcao de software e sistemas complexos.
As bases filosoficas do ASD se concentram na colaboracao humana e na auto-organizacao das
equipes.

Highsmith argumenta que uma abordagem de desenvolvimento agil e adaptativo baseada na
colaboragao constitui “um recurso para organizar nossas complexas interacoes, tanto quanto
disciplina e engenharia o sao”. Ele define um “ciclo de vida” ASD (Figura 3.3) que incorpora trés
fases: especulacao, colaboracao e aprendizagem.

Durante a especulacdo, o projeto € iniciado e conduzido o planejamento de ciclos adaptdveis.
O planejamento de ciclos adaptdveis usa as informacoes do inicio de projeto — o estabelecimen-
to da missao do cliente, as restricoes do projeto (por exemplo, datas de entrega ou descrigoes
de usuarios) e os requisitos basicos — para definir o conjunto de ciclos de versdo (incrementos
de software) que serao requisitados para o projeto.

Nao importa quao completo e com visao de futuro seja o plano de ciclos, invariavelmente
sofrera mudancgas. Baseando-se nas informagoes obtidas ao se completar o primeiro ciclo, o
plano ¢ revisto e ajustado de modo que o trabalho planejado melhor se ajuste a realidade na
qual a equipe ASD esta trabalhando.

Desenvolvimento de
software adaptavel

planejamento de diclos adaptativos Levantamento de necessidades
estabelecimento da misséo JAD o
restricdes do projeto miniespecificacdes

requisitos basicos
plano de entregas com tempo estabelecido

\

Versdo

incremento de software
ajustes para ciclos subsequentes

componentes implementados/testados
grupos focados para feedback
revisées técnicas formais

autopsias

12 Veja http:/en.wikipedia.org/wiki/Agile_software_development#Agile_methods.

PONTO-
-CHAVE

0 ASD enfatiza o
aprendizado como
elemento-chave para
conseguir uma equipe
“aufo-organizada”’.

Grupo 13

Informacdes e recursos
{teis sobre o Scrum
podem ser encontrados
em www.control
chaos.com.

PONTO-
-CHAVE

0 Scrum engloba

um conjunto de
padrdes de processos
enfatizando
prioridades de projeto,
unidades de trabatho
compartimentalizadas,
comunicagdo e
feedback frequente
por parte dos clientes.

CAPITULO 3 DESENVOLVIMENTO AGIL 95

As pessoas motivadas usam a colaboragdo de uma forma que multiplique seus talentos e pro-
ducoes criativas além de seus numeros absolutos. Tal abordagem € tema recorrente em todos os
métodos ageis. Porém, colaboracao nao € algo facil, envolve comunicacéo e trabalho em equipe,
mas também enfatiza o individualismo, pois a criatividade individual desempenha um impor-
tante papel no pensamento colaborativo. Trata-se, sobretudo, de uma questao de confianga.
Pessoas que trabalham juntas tém de confiar umas nas outras para (1) criticar sem animosidade,
(2) auxiliar sem ressentimentos, (3) trabalhar tao arduamente ou mais do que elas fazem, (4)
possuir o conjunto de habilidades que contribua com o atual trabalho e (5) comunicar proble-
mas ou preocupagoes de forma que conduzam a agoes efetivas.

Conforme os membros de uma equipe ASD comecem a desenvolver os componentes que
fazem parte de um ciclo adaptavel, a énfase reside no “aprendizado” tanto quanto reside no
progresso para um ciclo completado. De fato, Highsmith [Hig00] argumenta que os desenvol-
vedores de software normalmente superestimam seu proprio entendimento (da tecnologia, do
processo e do projeto) € que a aprendizagem ira ajuda-los a aumentar seus niveis reais de en-
tendimento. As equipes ASD aprendem de trés maneiras: grupos focados (Capitulo 5), revisoes
técnicas (Capitulo 14) e autopsias de projetos (analises postmortems).

A filosofia ASD tem seus méritos independentemente do modelo de processos utilizado. A
énfase global da ASD esta na dinamica das equipes auto-organizadas, na colaboragao interpes-
soal e na aprendizagem individual e da equipe que levam as equipes de projeto de software a
uma probabilidade muito maior de sucesso.

3.5.2 Scrum

Scrum (o nome provém de uma atividade que ocorre durante a partida de rugby'®) é um
método de desenvolvimento agil de software concebido por Jeff Sutherland e sua equipe de de-
senvolvimento no inicio dos anos 1990. Mais recentemente, foram realizados desenvolvimentos
adicionais nos métodos graficos Scrum por Schwaber e Beedle [Sch01a].

Os principios do Scrum sdo consistentes com o manifesto agil e sao usados para orientar
as atividades de desenvolvimento dentro de um processo que incorpora as seguintes atividades
estruturais: requisitos, analise, projeto, evolugao e entrega. Em cada atividade metodologica,
ocorrem tarefas a realizar dentro de um padrao de processo (discutido no paragrafo a seguir)
chamado sprint. O trabalho realizado dentro de um sprint (0 numero de sprints necessarios para
cada atividade metodoldgica varia dependendo do tamanho e da complexidade do produto) é
adaptado ao problema em questao e definido, e muitas vezes modificado em tempo real, pela
equipe Scrum. O fluxo geral do processo Scrum € ilustrado na Figura 3.4.

O Scrum enfatiza o uso de um conjunto de padroes de processos de software [Noy02] que pro-
varam ser eficazes para projetos com prazos de entrega apertados, requisitos mutaveis e criticos de
negdécio. Cada um desses padroes de processos define um conjunto de acoes de desenvolvimento:

Registro pendente de trabalhos (Backlog) — uma lista com prioridades dos requisitos ou
funcionalidades do projeto que fornecem valor comercial ao cliente. Os itens podem ser adi-
cionados a esse registro em qualquer momento (€ assim que as alteracoes sdo introduzidas). O
gerente de produto avalia o registro e atualiza as prioridades conforme requisitado.

Urgéncias (corridas de curta distancia) sprints — consistem de unidades de trabalho solici-
tadas para atingir um requisito estabelecido no registro de trabalho (backlog) e que precisa ser
ajustado dentro de um prazo ja fechado (janela de tempo)'* (tipicamente 30 dias).

Alteracoes (por exemplo, itens do registro de trabalho — backlog work itens) nao sao intro-
duzidas durante execucao de urgéncias (sprint). Portanto, o sprint permite que os membros de
uma equipe trabalhem em um ambiente de curto prazo, porém estavel.

13 Um grupo de jogadores faz uma formagao em torno da bola e seus companheiros de equipe trabalham juntos (as vezes, de
forma violenta!) para avangar com a bola em direcao ao fundo do campo.

14 Janela de tempo (time boxing) € um termo de gerenciamento de projetos (veja a Parte 4 deste livro) que indica um periodo de
tempo destinado para cumprir alguma tarefa.

96

PARTE 1 O PROCESSO DE SOFTWARE

Scrum

Backlog do Sprint: ltens pendentes
Funcionalidade(s) do Backlog

atribuida(s)
ao sprint

Grupo 14

Recursos Gteis para o
DSSD podem ser en-
contrados em www.
dsdm.org.

Fluxo do processo O %
Q a cada

Scrum: Reunides diarias de 15 minutos.

Os membros da equipe respondem ds

questdes basicas

1) O que vocé realizou desde a Gltima Scrum?

2) Vocé esta tendo alguma dificuldade?

3) O que vocé ird fazer antes da préxima reunido?

24 horas ,

>
expandidos
pela equipe

Backlog do Produto:

Priorizacdo das funcionalidades do produto desejadas pelo cliente

A nova funcionalidade
é demonstrada no
final do sprint

Reunioes Scrum — sao reuniodes curtas (tipicamente 15 minutos), realizadas diariamente
pela equipe Scrum. Sao feitas trés perguntas-chave e respondidas por todos os membros da
equipe [Noy02]:

* O que voce realizou desde a ultima reunidao de equipe?
* Quais obstaculos esta encontrando?
* O que planeja realizar até a proxima reunido da equipe?

Um lider de equipe, chamado Scrum master, conduz a reunido e avalia as respostas de cada
integrante. A reuniao Scrum, realizada diariamente, ajuda a equipe a revelar problemas poten-
ciais 0 mais cedo possivel. Ela também leva a “socializacao do conhecimento” [Bee99] €, por-
tanto, promove uma estrutura de equipe auto-organizada.

Demos — entrega do incremento de software ao cliente para que a funcionalidade imple-
mentada possa ser demonstrada e avaliada pelo cliente. E importante notar que a demo pode
nao ter toda a funcionalidade planejada, mas sim funcdes que possam ser entregues no prazo
estipulado.

Beedle e seus colegas [Bee99] apresentam uma ampla discussao sobre esses padroes: “O
Scrum pressupoOe a existéncia do caos...”. Os padroes de processos do Scrum capacitam uma
equipe de software a trabalhar com sucesso em um mundo onde a eliminacdo da incerteza €é
impossivel.

.5.3 Método de Desenvolvimento de Sistemas Dinamicos (DSDM)

O método de desenvolvimento de sistemas dindmicos (Dynamic Systems Development Method)
[Sta97] € uma abordagem de desenvolvimento de software agil que “oferece uma metodologia
para construir € manter sistemas que atendem restricoes de prazo apertado através do uso da
prototipagem incremental em um ambiente de projeto controlado” [CCS02]. A filosofia DSDM
baseia-se em uma versao modificada do principio de Pareto — 80% de uma aplicacao pode ser
entregue em 20% do tempo que levaria para entregar a aplicagao completa (100%).

PONTO-
~-CHAVE

Crystal & uma
familia de modelos
de processos com

0 mesmo “codigo
genético”, mas com
diferentes métodos
para se adaptarem
as caracteristicas do
projefo.

Grupo 15

PONTO-
-CHAVE

0 DSDM é um uma
metodologia de
processos que pode
adotar o fdtica de
uma outra abordagem
dgil como a XP.

CAPITULO 3 DESENVOLVIMENTO AGIL 97

O DSDM € um processo de software iterativo em que cada iteracao segue a regra dos 80%.
Ou seja, somente o trabalho suficiente é requisitado para cada incremento, para facilitar o movi-
mento para o proximo incremento. Os detalhes remanescentes podem ser completados depois,
quando outros requisitos de negocio forem conhecidos ou alteracoes tiverem sido solicitadas e
acomodadas.

O DSDM Consortium (www.dsdm.org) é um grupo mundial de empresas-membro que
coletivamente assume o papel de “mantenedor” do método. Esse consércio definiu um modelo
de processos ageis, chamado ciclo de vida DSDM que define trés ciclos iterativos diferentes,
precedidos por duas atividades de ciclo de vida adicionais:

Estudo da viabilidade — estabelece os requisitos basicos de negocio e restricoes associados
a aplicacao a ser construida e depois avalia se a aplicagdo € ou nao um candidato viavel para o
processo DSDM.

Estudo do negdcio — estabelece os requisitos funcionais e de informacao que permitirao a
aplicacao agregar valor de negdcio; define também a arquitetura bésica da aplicacao e identifica
os requisitos de facilidade de manutencao para a aplicagao.

Iteragdo de modelos funcionais — produz um conjunto de prototipos incrementais que demons-
tram funcionalidade para o cliente. (Nota: Todos os protétipos DSDM séo feitos com a intengéao de
que evoluam para a aplicacao final entregue ao cliente.) Durante esse ciclo iterativo, o objetivo é
juntar requisitos adicionais ao se obter feedback dos usuérios, conforme testam o protétipo.

Iteragdo de projeto e desenvolvimento — revisita protétipos desenvolvidos durante a iteracdo
de modelos funcionais para assegurar-se de que cada um tenha passado por um processo de
engenharia para capacita-los a oferecer, aos usuarios finais, valor de negdcio em termos opera-
cionais. Em alguns casos, a iteragdo de modelos funcionais e a itera¢do de projeto e desenvolvi-
mento ocorrem ao mesmo tempo.

Implementacdo — aloca a ultima versao do incremento de software (um protétipo “operacio-
nalizado”) no ambiente operacional. Deve-se notar que: (1) o incremento pode nao estar 100%
completo ou (2) alteracoes podem vir a ser solicitadas conforme o incremento seja alocado. Em
qualquer dos casos, o trabalho de desenvolvimento do DSDM continua, retornando-se a ativi-
dade de iteragao do modelo funcional.

O DSDM pode ser combinado com a XP (Secao 3.4) para fornecer uma abordagem combina-
téria que define um modelo de processos consistente (o ciclo de vida do DSDM) com as praticas
basicas (XP) necessarias para construir incrementos de software. Além disso, os conceitos de
colaboragao e de equipes auto-organizadas do ASD podem ser adaptados a um modelo de pro-
cessos combinado.

3.5.4 Crystal

Alistair Cockburn [Coc05] e Jim Highsmith [Hig02b] criaram a familia Crystal de métodos
dgeis' visando conseguir elaborar uma abordagem de desenvolvimento de software que priori-
zasse a adaptabilidade (“maneuverability”) durante o que Cockburn caracteriza como um “jogo
de invengao e comunicacao cooperativo e com recursos limitados, tendo como primeiro obje-
tivo entregar software util em funcionamento e como segundo objetivo preparar-se para o jogo
seguinte” [Coc02].

Para conseguir adaptabilidade, Cockburn e Highsmith definiram um conjunto de metodolo-
gias com elementos essenciais comuns a todas, mas com papéis, padroes de processos, pro-
dutos de trabalho e pratica Unicos para cada uma delas. A familia Crystal ¢, na verdade, um
conjunto de exemplos de processos ageis que provaram ser efetivos para diferentes tipos de
projetos. A intengdo € possibilitar que equipes ageis selecionem o membro da familia Crystal
mais apropriado para seu projeto e seu ambiente.

15 O nome “crystal” (cristal) é derivado das caracteristicas dos cristais geologicos, cada qual com sua cor, forma e dureza pro-
prias.

98

Uma ampla variedade
de arfigos e apresentc-
¢des sobre o FDD pode
ser encontrada em:
www.feature

drivendevelopment.

com/.

Grupo 16

PARTE 1 O PROCESSO DE SOFTWARE

3.5.5 Desenvolvimento Dirigido a Funcionalidades (FDD)

O desenvolvimento dirigido a funcionalidades (Feature Driven Development) foi concebido
originalmente por Peter Coad e seus colegas [Coa99] como um modelo de processos pratico
para a engenharia de software orientada a objetos. Stephen Palmer e John Felsing [Pal02] esten-
deram e aperfeicoaram o trabalho de Coad, descrevendo um processo agil adaptativo que pode
ser aplicado a projetos de software de porte moderado e a projetos maiores.

Como outras abordagens ageis, o FDD adota uma filosofia que (1) enfatiza a colaboracao
entre pessoas da equipe FDD; (2) gerencia problemas e complexidade de projetos utilizando a
decomposicao baseada em funcionalidades, seguida pela integracao dos incrementos de soft-
ware, e (3) comunicagao de detalhes técnicos usando meios verbais, graficos e de texto. O FDD
enfatiza as atividades de garantia da qualidade de software por meio do encorajamento de uma
estratégia de desenvolvimento incremental, o uso inspe¢oes do codigo e do projeto, a aplicagao
de auditorias para garantia da qualidade de software (Capitulo 16), a coleta de métricas € o uso
de padroes (para analise, projeto € construgao).

No contexto do FDD, funcionalidade “é uma funcao valorizada pelo cliente passivel de ser
implementada em duas semanas ou menos” [Coa99]. A énfase na definicao de funcionalidades
gera os seguintes beneficios:

* Como as funcionalidades formam pequenos blocos que podem ser entregues, 0s usua-
rios podem descrevé-las mais facilmente; compreender como se relacionam entre si mais
prontamente; e revisa-las melhor em termos de ambiguidade, erros ou omissoes.

* As funcionalidades podem ser organizadas em um agrupamento hierarquico relacionado
com 0 negocio.

* Como uma funcionalidade é o incremento de software do FDD que pode ser entregue, a
equipe desenvolve funcionalidades operacionais a cada duas semanas.

* Pelo fato de o bloco de funcionalidades ser pequeno, seus projeto e representacoes de
codigo sao mais faceis de inspecionar efetivamente.

* O planejamento, cronograma e acompanhamento do projeto sao guiados pela hierarquia
de funcionalidades, em vez de um conjunto de tarefas de engenharia de software arbitra-
riamente adotado.

Coad e seus colegas [Coa99] sugerem o seguinte modelo para definir uma funcionalidade:

<acao> o <resultado> <por| para quem |de |para que> um <objeto>

em que um <objeto> € “uma pessoa, local ou coisa (inclusive papéis, momentos no tempo ou
intervalos de tempo ou descricoes parecidas com aquelas encontradas em catalogos)”. Exem-
plos de funcionalidades para uma aplicacédo de comércio eletronico poderiam ser:

Adicione o produto ao carrinho
Mostre as especificacoes técnicas do produto
Armazene as informagoes de remessa para o cliente

Um conjunto de funcionalidades agrupa funcionalidades em categorias correlacionadas por
negocio e é definido [Coa99] com:

<acao> um <objeto>

Por exemplo: Fazer a venda de um produto é um conjunto de funcionalidades que abrangeria
os fatores percebidos anteriormente e outros.

A abordagem FDD define cinco atividades metodoldgicas “colaborativas” [Coa99] (no FDD
estas sao denominadas “processos”) conforme mostra a Figura 3.5.

O FDD oferece maior énfase as diretrizes e técnicas de gerenciamento de projeto do que
muitos outros métodos ageis. Conforme os projetos crescem em tamanho e complexidade, com

CAPITULO 3 DESENVOLVIMENTO AGIL 99

Desenvolvimento [I
dirigido a funcionalidades [
(Coa99)
(com
permissdo) | Desenvolver Construir Planejar Projetar Desenvolver
um uma por por por
Modelo Lista de Funcionalidades Funcionalidade Funcionalidade
Geral Funcionalidades|
| | |
(mais forma do Uma lista de Um plano de Um pacote de Fungdo valor<liente
que conteldo) funcionalidades desenvolvimento projefo (sequéncias) completada
agrupadas em Proprietérios de classes
conjuntos e em Proprietarios de Conjuntos
areas com dfinidades de Funcionalidade
temdticas
frequéncia o gerenciamento de projeto para finalidade local torna-se inadequado. E essencial
para os desenvolvedores, seus gerentes € outros envolvidos compreenderem o posicionamento
do projeto — que realizacoes foram feitas e que problemas foram encontrados. Se a pressao
do prazo de entrega for significativa, € critico determinar se os incrementos de software (fun-
cionalidades) foram agendados apropriadamente. Para tanto, o FDD define seis marcos durante
o projeto e a implementacdo de uma funcionalidade: “desenrolar (walkthroughs) do projeto,
projeto, inspecao de projeto, codificacao, inspecao de codigo, progressao para construgdo/de-
senvolvimento” [Coa99].
FimGrupo16 3 5.6 Desenvolvimento de Software Enxuto (LSD)

O desenvolvimento de software enxuto (Lean Software Development) adaptou os principios
da fabricacao enxuta para o mundo da engenharia de software. Os principios enxutos que ins-
piraram o processo LSD podem ser sintetizados ([Pop03], [Pop0O6a]) em: eliminar desperdicio,
incorporar qualidade, criar conhecimento, adiar compromissos, entregar rdpido, respeitar as pes-
soas e otimizar o todo.

Cada um dos principios pode ser adaptado ao processo de software. Por exemplo, eliminar
desperdicio no contexto de um projeto de software agil pode ser interpretado como [Das05]: (1)
nao adicionar recursos ou funcgoes estranhas, (2) avaliar o impacto do custo e do cronograma de
qualquer requisito solicitado recentemente, (3) eliminar quaisquer etapas de processo supérflu-
as, (4) estabelecer mecanismos para aprimorar o modo pelo qual a equipe levanta informacoes,
(5) assegurar-se de que os testes encontrem o maior numero de erros possivel, (6) reduzir o
tempo necessario para solicitar e obter uma decisdo que afete o software ou o processo apli-
cado para cria-lo e (7) racionalizar a maneira pela qual informacoes sao transmitidas a todos
envolvidos no processo.

Para uma discussao detalhada do LSD e diretrizes pragmaticas para implementagéo do pro-
cesso, consulte [Pop06a] e [Pop06b].

3.5.7 Modelagem Agil (AM)

Existem muitas situacoes em que engenheiros de software tém de desenvolver sistemas
grandes, com detalhes criticos em termos de negocio. O escopo e complexidade de tais siste-
mas devem ser modelados de modo que (1) todas as partes envolvidas possam entender melhor

100

Informaciio
ampla sobre

a modelagem
agil pode ser
encontrada

em: WWW.
agilemodeling.
com.

“Um dia, estava
em uma farmdcia
tentando achar

um remédio para
resfriado... Ndo foi
facil... Havia uma
parede inteira de
produtos. Fica-se ld
procurando: ‘Bem,
este tem acdo
imediata, mas este
outro fem efeito
mais duradouro....
0 que é mais
importante, o
presente ou 0
futur?”

Jerry Seinfeld

QA'wsos

“Viajar leve” & uma
filosofia apropriada
para fodo o trabalho
de engenharia de
software. Construa
apenas aqueles
modelos que fornecam
valor. ... Nem mais,
nem menos.

PARTE1 O PROCESSO DE SOFTWARE

quais requisitos deverdo ser atingidos, (2) o problema possa ser subdividido eficientemente
entre as pessoas que tém de soluciona-lo e (3) a qualidade possa ser avaliada enquanto se esta
projetando e desenvolvendo o sistema.

Ao longo dos ultimos 30 anos, uma ampla variedade de notagoes e métodos de modelagem
de engenharia de software tem sido proposta para analise e projeto (tanto no nivel de compo-
nente como de arquitetura). Esses métodos tém seus méritos, mas provaram ser dificeis de ser
aplicados e desafiadores para ser mantidos (ao longo de varios projetos). Parte do problema € o
“peso” dos métodos de modelagem. Com isso quero dizer o volume de notagao exigido, o grau
de formalismo sugerido, o puro tamanho dos modelos para grandes projetos e a dificuldade
em manter o(s) modelo(s) a medida que ocorrem as mudangas. Contudo, o modelamento de
analise e projeto tem um beneficio substancial para grandes projetos — ainda que seja apenas
para torna-los intelectualmente gerenciaveis. Existe uma abordagem agil para a modelagem de
engenharia de software que poderia fornecer uma alternativa?

No “The Official Agile Modeling Site”, Scott Ambler [Amb02a] descreve modelagem dgil (AM)
da seguinte maneira:

Modelagem agil (AM) consiste em uma metodologia baseada na pratica, voltada para o modelamento
e documentacao de sistemas com base em software. Simplificando, modelagem agil consiste em um
conjunto de valores, principios e praticas voltados para a modelagem do software que pode ser apli-
cados em um projeto de desenvolvimento de software de forma leve e efetiva. Os modelos ageis sao
mais efetivos do que os tradicionais pelo fato de serem meramente bons, pois nao tém a obrigacao de
ser perfeitos.

Modelagem agil adota todos os valores consistentes com o manifesto agil. Sua filosofia reco-
nhece que uma equipe agil deve ter a coragem de tomar decisdes que possam causar a rejeicao
de um projeto e sua refabricacdo. A equipe também deve ter humildade para reconhecer que
os profissionais de tecnologia nao possuem todas as respostas e que os experts em negocios e
outros envolvidos devem ser respeitados e integrados ao processo.

Embora a AM sugira uma ampla gama de principios de modelagem essenciais e suplementa-
res, 0s que tornam a AM Unica sao [Amb02a]:

Modele com um objetivo. O desenvolvedor que utilizar o AM deve ter um objetivo antes
de criar o modelo (por exemplo, comunicar informagoes ao cliente ou ajudar a compreender
melhor algum aspecto do software). Uma vez identificado o objetivo, ficara mais 6bvio o tipo
de notacao a ser utilizado e o nivel de detalhamento necessario.

Use modelos multiplos. H& muitos modelos e notacoes diferentes que podem ser usados
para descrever software. Somente um subconjunto € essencial para a maioria dos projetos. AM
sugere que, para propiciar o insight necessario, cada modelo deve apresentar um aspecto dife-
rente do sistema e somente aqueles que valorizem esses modelos para a audiéncia pretendida
devem ser usados.

Viajar leve. Conforme o trabalho de engenharia de software prossegue, conserve apenas
aqueles modelos que terao valor no longo prazo e despache o restante. Todo produto de
trabalho mantido deve sofrer manutencao a medida que as mudancas ocorram. Isso repre-
senta trabalho que retarda a equipe. Ambler [Amb02a] observa que “Toda vez que se opta por
manter um modelo, troca-se a agilidade pela conveniéncia de ter aquela informacao acessi-
vel para a equipe de uma forma abstrata (ja que, potencialmente, aumenta a comunicacao
dentro da equipe, assim como com os envolvidos no projeto)”.

Contetuido é mais importante do que a representacao. A modelagem deve transmitir
informacgao para sua audiéncia pretendida. Um modelo sintaticamente perfeito que trans-
mita pouco contetido util nao possui tanto valor como aquele com notacoes falhas que, no
entanto, fornece conteudo valioso para seu publico-alvo.

Tenha conhecimento, dominio dos modelos e das ferramentas que for utilizar.
Compreenda os pontos fortes e fracos de cada modelo e ferramenta usada para cria-lo.

N

Engenharia de requisitos

CAPITULO 3 DESENVOLVIMENTO AGIL 101

Adapte localmente. A abordagem de modelagem deve ser adaptada as necessidades da
equipe agil.

Um segmento de vulto da comunidade da engenharia de software adotou a linguagem de
modelagem unificada (Unified Modeling Language, UML)'® como o método preferido para anali-
se representativa e para modelos de projeto. O Processo unificado (Capitulo 2) foi desenvolvido
para fornecer uma metodologia para a aplicacao da UML. Scott Ambler [Amb06] desenvolveu
uma versao simplificada do UP que integra sua filosofia de modelagem agil.

3.5.8 Processo Unificado Agil (AUP)

O processo unificado dgil (Agile Unified Process) adota uma filosofia “serial para o que é am-
plo” e “iterativa para o que € particular” [Amb06] no desenvolvimento de sistemas computadori-
zados. Adotando as atividades em fases UP classicas — inicio, elaboragdo, construgdo e transi¢ao
—, AUP fornece uma camada serial (isto ¢, uma sequéncia linear de atividades de engenharia de
software) que capacita uma equipe a visualizar o fluxo do processo geral de um projeto de soft-
ware. Entretanto, dentro de cada atividade, a equipe itera ou se repete para alcancar a agilidade
e para entregar incrementos de software significativos para os usuarios finais tao rapidamente
quanto possivel. Cada iteracao AUP dirige-se para as seguintes atividades [Amb06]:

* Modelagem. Representacoes UML do universo do negocio e do problema sao criadas.
Entretanto, para permanecer agil, esses modelos devem ser “suficientemente bons e ade-
quados” [Amb06] para possibilitar que a equipe prossiga.

* Implementacdo. Os modelos séo traduzidos para o codigo-fonte.

e Teste. Como a XP, a equipe projeta e executa uma série de testes para descobrir erros e
assegurar que o codigo-fonte se ajuste aos requisitos.

e Aplicacdo. Como a atividade de processo genérica discutida nos Capitulos 1 e 2, a apli-
cacao neste contexto enfoca a entrega de um incremento de software e a aquisicao de
feedback dos usuarios finais.

* Configuragdo e gerenciamento de projeto. No contexto da AUE gerenciamento de confi-
guracdo (Capitulo 22) refere-se a gerenciamento de alteracoes, de riscos e de controle de
qualquer artefato!” persistente que sejam produzidos por uma equipe. Gerenciamento de
projeto traciona e controla o progresso de uma equipe e coordena suas atividades.

FERRAMENTAS DO SOFTWARE

tende a vender ferramentas que ddo suporte para a

&%
Q Objetivo: O objetivo das ferramentas de desenvol-

vimento agil é auxiliar em um ou mais aspectos do

desenvolvimento agil com énfase em facilitar a geracdo répida
de software operacional. Essas ferramentas também podem ser
usadas quando forem aplicados modelos de processos prescri-
tivos (Capitulo 2).
Mecéanica: A mecénica das ferramentas varia. Em geral, con-
juntos de ferramentas ageis englobam suporte automatizado
para o planejamento de projetos, desenvolvimento de caso
prdtico, coletdnea de requisitos, projeto répido, geracdo de
codigo e teste.
Ferramentas representativas:'®
Nota: Por ser o desenvolvimento agil um tépico importante,

a maioria dos vendedores de ferramentas de software

abordagem é&gil. As ferramentas aqui observadas tém
caracteristicas que as tornam particularmente Gteis para
projetos ageis.

OnTime, desenvolvida pela Axosoft (www.axosoft.com),
fornece suporte para gerenciamento de processo d&gil
para uma variedade de atividades técnicas dentro do
processo.

Ideogramic UML, desenvolvida pela Ideogramic (www.ideo
gramic.com), é um conjunto de ferramentas UML desen-
volvido para uso em processo agil.

Together Tool Set, distribuida pela Borland (www.borland.
com), fornece uma mala de ferramentas que ddo suporte
para muitas atividades técnicas na XP e em outros proces-
sos ageis.

J

16 Um breve tutorial sobre a UML € apresentado no Apéndice 1.
17 Artefato persistente ¢ um modelo ou documento ou pacote de testes produzido pela equipe que sera mantido por um periodo
de tempo indeterminado. Ndo seré descartado, uma vez que o incremento de software seja entregue.
18 Ferramentas observadas aqui ndo significam um aval, mas antes, uma amostra de ferramentas nesta categoria. Na maioria
dos casos, os nomes das ferramentas sao negociados por seus respectivos desenvolvedores.

102

PARTE1 O PROCESSO DE SOFTWARE

* Gerenciamento do ambiente. Coordena a infraestrutura de processos que inclui padroes,
ferramentas e outras tecnologias de suporte disponiveis para a equipe.

Embora o AUP possua conexoes historicas e técnicas com a linguagem de modelagem uni-
ficada, € importante notar que a modelagem UML pode ser usado em conjunto com quaisquer
modelos de processos ageis descritos na Secao 3.5.

3.6 Um CoNJUNTO DE FERRAMENTAS PARA O PROCESsSo AGIL
PONTO- Alguns proponentes da filosofia agil argumentam que as ferramentas de software automati-
-CHAVE zadas (por exemplo, ferramentas para projetos) deveriam ser vistas como um suplemento menor

0 “conjunto de
ferramentas” que
suporta 0s processos
dgeis focaliza mais
as questdes pessois
do que as questdes
tecnologicas.

3.7

para as atividades, € ndo como pivO para o sucesso da equipe. Entretanto, Alistair Cockburn
[Coc04] sugere que ferramentas podem gerar um beneficio e que “equipes ageis enfatizam o
uso de ferramentas que permitam o fluxo rapido de compreensdo. Algumas dessas ferramentas
sao sociais, iniciando-se até no estagio de contratacdo de pessoal. Algumas sao tecnolégicas,
auxiliando equipes distribuidas a simular sua presenca fisica. Muitas sao fisicas, permitindo sua
manipulacao em workshops”.

Pelo fato de que contratar as pessoas certas, ter a colaboracao da equipe, manter a comuni-
cacao com os envolvidos e conseguir gerenciar de forma indireta constituirem elementos-chave
em praticamente todos os modelos de processos ageis, Cockburn afirma que “ferramentas”
destinadas a esses itens sao fatores criticos para a agilidade. Por exemplo, uma “ferramenta”
alugada pode vir a ser um requisito para ter um membro de equipe de prospeccao destinado a
despender algumas poucas horas em programacao em dupla, com um membro ja existente da
equipe. O “encaixe” pode ser avaliado imediatamente.

“Ferramentas” voltadas para a comunicacao € para a colaboracao sao, em geral, de tecno-
logia de base e incorporam qualquer mecanismo (“proximidade fisica, quadros brancos, papéis
para poster, fichas e lembretes adesivos” [Coc04]) que fornece informacdes e coordenagao entre
desenvolvedores. A comunicacao ativa é obtida por meio de dinamicas de grupo (por exemplo,
programacao em dupla), enquanto a comunicacao passiva €é obtida através dos “irradiadores
de informacgoes” (por exemplo, um display de um painel fixo que apresente o status geral dos
diferentes componentes de um incremento). As ferramentas de gerenciamento de projeto nao
enfatizam tanto o diagrama de Gantt e o realoca com quadros de valores ganhos ou “graficos
de testes criados e cruzados com os anteriores... Outras ferramentas ageis sao utilizadas para
otimizar o ambiente no qual a equipe agil trabalha (por exemplo, mais areas eficientes de en-
contro), também para ampliar a cultura da equipe por meio de incentivos para interacdes sociais
(por exemplo, equipes alocadas juntas), para dispositivos fisicos (por exemplo, lousas eletroni-
cas) e para ampliacao (por exemplo, programacao em dupla ou janela de tempo)” [Coc04].

Quaisquer dessas coisas sao ferramentas? Serao, caso facilitem o trabalho desenvolvido por
um membro da equipe agil e venham a aprimorar a qualidade do produto final.

REsuMoO

Em uma economia moderna, as condicoes de mercado mudam rapidamente, tanto o clien-
te quanto o usuario final devem evoluir e novos desafios competitivos surgem sem aviso. Os
desenvolvedores tém de assumir uma abordagem de engenharia de software para permitir que
permanecam ageis — definindo processos que sejam manipulaveis, adaptaveis, sem excessos,
somente com o conteudo essencial que possa adequar-se as necessidades do moderno mundo
de negdcios.

Uma filosofia agil para a engenharia de software enfatiza quatro elementos-chave: a im-
portancia das equipes que se auto-organizam, que tenham controle sobre o trabalho por elas
realizado, sobre a comunicagao e sobre a colaboragao entre os membros da equipe € entre os

CAPITULO 3 DESENVOLVIMENTO AGIL 103

desenvolvedores e seus clientes; o reconhecimento de que as mudancas representam oportuni-
dades e énfase na entrega rapida do software para satisfazer o cliente.

A Extreme Programming (XP) € o processo agil mais amplamente utilizado. Organizada em
quatro atividades metodoldgicas, planejamento, projeto, codificacao e testes, a XP sugere um
numero de técnicas poderosas e inovadoras que possibilitam a uma equipe agil criar versoes de
software frequentemente, propiciando recursos e funcionalidade estabelecidos anteriormente,
e, entao, priorizando os envolvidos.

Outros modelos de processos ageis também enfatizam a colaboracdo humana e a auto-
-organizacao das equipes, mas definem suas proprias atividades metodologicas e selecionam
diferentes pontos de énfase. Por exemplo, ASD usa um processo iterativo que incorpora um
planejamento ciclico iterativo, métodos de levantamento de requisitos relativamente rigorosos,
e um ciclo de desenvolvimento iterativo que incorpora grupos focados nos clientes e revisoes
técnicas formais como mecanismos de feedback em tempo real. O Scrum enfatiza o uso de um
conjunto de padroes de software que se mostrou efetivo para projetos com cronogramas aper-
tados, requisitos mutaveis e aspectos criticos de negocio. Cada padrao de processo define um
conjunto de tarefas de desenvolvimento e permite a equipe Scrum construir um processo que
se adapta as necessidades do projeto. O método de desenvolvimento de sistemas dindmicos
(DSDM) defende o uso de um cronograma de tempos definidos (janela de tempo) e sugere que
apenas o trabalho suficiente seja requisitado para cada incremento de software para facilitar o
movimento ao incremento seguinte. Crystal ¢ uma familia de modelos de processos ageis que
podem ser desenvolvidos para uma caracteristica especifica de um projeto.

O desenvolvimento dirigido a funcionalidades (FDD) € ligeiramente mais “formal” que os ou-
tros métodos, mas ainda mantém agilidade ao focar a equipe do projeto no desenvolvimento de
funcionalidades — validadas pelo cliente que possam ser implementadas em duas semanas ou
menos. O desenvolvimento de software enxuto (LSD) adaptou os principios de uma fabricacao
enxuta para o mundo da engenharia de software. A modelagem agil (AM) afirma que modelagem
€ essencial para todos os sistemas, mas a complexidade, tipo € tamanhos de um modelo devem
ser balizados pelo software a ser construido. O processo unificado agil (AUP) adota a filosofia
de “serial para o que € amplo” e “iterativa para o que € particular” para o desenvolvimento de
software.

PROBLEMAS E PONTOS A PONDERAR

3.1. Releia “The Manifesto for Agile Software Development” no inicio deste capitulo. Vocé
consegue exemplificar uma situacao em que um ou mais dos quatro “valores” poderiam levar
a equipe a ter problemas?

3.2. Descreva agilidade (para projetos de software) com suas proprias palavras.

3.3. Por que um processo iterativo facilita o gerenciamento de mudangas? Todos 0s pro-
cessos ageis discutidos neste capitulo sdo iterativos? E possivel completar um projeto com
apenas uma iteracao e ainda assim permanecer agil? Justifique suas respostas.

3.4. Cada um dos processos ageis poderia ser descrito usando-se as atividades estruturais
genéricas citadas no Capitulo 2? Construa uma tabela que associe as atividades genéricas as
atividades definidas para cada processo agil.

3.5. Tente elaborar mais um “principio de agilidade” que ajudaria uma equipe de engenharia
de software a se tornar mais manobravel.

3.6. Escolha um principio de agilidade citado na Secdo 3.3.1 e tente determinar se cada um
dos modelos de processos apresentados neste capitulo demonstra o principio. [Nota: Apre-
sentei apenas uma visao geral desses modelos de processos; portanto, talvez nao seja pos-
sivel determinar se determinado principio foi ou ndo tratado por um ou mais dos modelos, a
menos que vocé pesquise mais a respeito (0 que nao € exigido para o presente problema).

104

PARTE1 O PROCESSO DE SOFTWARE

3.7. Por que os requisitos mudam tanto? Afinal de contas, as pessoas nao sabem o que elas
querem?

3.8. A maior parte dos modelos de processos ageis recomenda comunicacao cara a cara.
Mesmo assim, hoje em dia os membros de uma equipe de software e seus clientes podem
estar geograficamente separados uns dos outros. Vocé acredita que isso implique que a se-
paracao geografica seja algo a ser evitado? Vocé € capaz de imaginar maneiras para superar
esse problema?

3.9. Escreva uma historia de usuario XP que descreva o recurso “sites favoritos” ou “book-
marks” disponivel na maioria dos navegadores para Web.

3.10. O que é uma solucao pontual na XP?

3.11. Descreva com suas proprias palavras os conceitos de refabricacdo e programacao em
dupla da XP

3.12. Leia um pouco mais a respeito e descreva o que é uma janela de tempo. Como isso aju-
da uma equipe ASD na entrega de incrementos de software em um curto periodo de tempo?
3.13. A regra dos 80% do DSDM e a abordagem de janelas de tempo definida para o ASD
alcancam os mesmos resultados?

3.14. Usando a planilha de padroes de processos apresentada no Capitulo 2, desenvolva um
padréo de processo para qualquer um dos padroes Scrum da Secao 3.5.2.

3.15. Por que o Crystal € considerado uma familia de métodos ageis?

3.16. Usando o gabarito de recursos FDD descrito na Se¢ao 3.5.5, defina um conjunto de
recursos para um navegador Web. Agora, desenvolva varios recursos para o conjunto de re-
cursos.

3.17. Vvisite “The Official Agile Modeling Site” e faca uma lista completa de todos os princi-
pios basicos e complementares do AM.

3.18. O conjunto de ferramentas proposto na Secao 3.6 oferece suporte a muitos dos aspec-
tos “menos prioritarios” dos métodos ageis. Como a comunicagdo € tao importante, reco-
mende um conjunto de ferramentas real que poderia ser usado para melhorar a comunicacao
entre os interessados de uma equipe agil.

LEITURAS E FONTES DE INFORMACAO COMPLEMENTARES

A filosofia geral e os principios subjacentes do desenvolvimento de software agil sdo con-
siderados em profundidade em muitos dos livros citados neste capitulo. Além destes, livros
como os de Shaw e Warden (The Art of Agile Development, O'Reilly Media, Inc., 2008), Hunt
(Agile Software Building, Springer, 2005) e Carmichael e Haywood (Better Software Faster,
Prentice-Hall, 2002) trazem discussoes interessantes sobre o tema. Aguanno (Managing Agile
Projects, Multi-Media Publications, 2005), Highsmith (Agile Project Management: Creating
Innovative Products, Addison-Wesley, 2004) e Larman (Agile and Iterative Development: A
Manager’s Guide, Addison-Wesley, 2003) apresentam uma visao geral sobre gerenciamento
e consideram as questoes envolvidas no gerenciamento de projetos. Highsmith (Agile Soft-
ware Development Ecosystems, Addison-Wesley, 2002) retrata uma pesquisa de principios,
processos e praticas ageis. Uma discussao que vale a pena sobre o delicado equilibrio entre
agilidade e disciplina € fornecida por Booch e seus colegas (Balancing Agility and Discipline,
Addison-Wesley, 2004).

Martin (Clean Code: A Handbook of Agile Software Craftsmanship, Prentice-Hall, 2009)
enumera os principios, padroes e praticas necessarios para desenvolver “codigo limpo” em
um ambiente de engenharia de software agil. Leffingwell (Scaling Software Agility: Best Prac-
tices for Large Enterprises, Addison-Wesley, 2007) discute estratégias para dar maior corpo as
praticas ageis para poderem ser usadas em grandes projetos. Lippert € Rook (Refactoring in
Large Software Projects: Performing Complex Restructurings Successfully,Wiley, 2006) discu-
tem o uso da refabricacao quando aplicada a sistemas grandes e complexos.

CAPITULO 3 DESENVOLVIMENTO AGIL 105

Stamelos e Sfetsos (Agile Software Development Quality Assurance, 1GI Global, 2007) tra-
zem técnicas SQA que estdo em conformidade com a filosofia agil.

Foram escritos dezenas de livros sobre Extreme Programming ao longo da ultima déca-
da. Beck (Extreme Programming Explained: Embrace Change, 2. ed., Addison-Wesley, 2004)
ainda € o tratado de maior autoridade sobre o tema. Além desse, Jeffries e seus colegas
(Extreme Programming Installed, Addison-Wesley, 2000), Succi e Marchesi (Extreme Program-
ming Examined, Addison-Wesley, 2001), Newkirk e Martin (Extreme Programming in Prac-
tice, Addison-Wesley, 2001), bem como Auer e seus colegas (Extreme Programming Applied:
Play to Win, Addison-Wesley, 2001), fornecem uma discussao basica da XP juntamente com
uma orientacdo sobre como melhor aplica-la. McBreen (Questioning Extreme Programming,
Addison-Wesley, 2003) adota uma visao critica em relacao a XB, definindo quando e onde ela é
apropriada. Uma analise aprofundada da programacao em dupla é apresentada por McBreen
(Pair Programming Illuminated, Addison-Wesley, 2003).

A ASD ¢ tratada em profundidade por Highsmith [Hig00]. Schwaber (The Enterprise and
Scrum, Microsoft Press, 2007) discute o uso do Scrum para projetos que possuem um grande
impacto sobre as empresas. Os detalhes praticos do Scrum sao debatidos por Schwaber e
Beedle (Agile Software Development with SCRUM, Prentice-Hall, 2001). Tratados Uuteis sobre o
DSDM foram escritos pelo DSDM Consortium (DSDM: Business Focused Development, 2. ed.,
Pearson Education, 2003) e Stapleton (DSDM: The Method in Practice, Addison-Wesley, 1997).
Cockburn (Crystal Clear, Addison-Wesley, 2005) traz uma excelente visdo geral da familia
Crystal de processos. Palmer e Felsing [Pal02] apresentam um tratado detalhado acerca do
FDD. Carmichael e Haywood (Better Software Faster, Prentice-Hall, 2002) é mais um tratado
util sobre o FDD que inclui uma jornada passo a passo através da mecanica do processo.
Poppendieck e Poppendieck (Lean Development: An Agile Toolkit for Software Development
Managers, Addison-Wesley, 2003) dao diretrizes para gerenciar e controlar projetos ageis.
Ambler e Jeffries (Agile Modeling, Wiley, 2002) discutem a AM com certa profundidade.

Uma grande variedade de fontes de informacao sobre desenvolvimento de software agil
esta disponivel na Internet. Uma lista atualizada de referéncias na Web relevantes ao proces-
so agil pode ser encontrada no site www.mhhe.com/engcs/compsci/pressman/professional/
olc/ser.htm.

