"Simply put, this book is both a must-read and a great reference for anyone working to define and
manage software development projects. In today's modern software development world, too often
sound requirements practices are set aside for the lure of “unencumbered” agile. Karl and Joy have
detailed a progressive approach to managing requirements, and detailed how to accommodate the
ever-changing approaches to delivering software.”

—Mark Kulak, Software Development Director, Borland, a Micro Focus company

"I am so pleased to see the updated book on software requirements from Karl Wiegers and Joy
Beatty. | especially like the latest topic on how to apply effective requirements practices to agile
projects, because it is a service that our consultants are engaged in more and more these days. The
practical guide and real examples of the many different requirement practices are invaluable."

—Doreen Evans, Managing Director of the Requirements and Business Analysis Practice for Robbins Gioia Inc.

“As an early adopter of Karl's classic book, Software Requirements, | have been eagerly awaiting his
new edition—and it doesn't disappoint. Over the years, IT development has undergone a change of
focus from large, new, ‘green-field" projects towards adoption of ready-made off-the-shelf solutions
and quick-release agile practices. In this latest edition, Karl and Joy explore the implications of these =
new developments on the requirements process, with invaluable recommendations based not on
dogma but on what works, honed from their broad and déép expetience in the field.”

—Howard Podeswa, CEO, Noble Inc., and author of The Business Analyst's Handbook

"If you are looking for a practical guide into what software requirements are, how to craft them, and
what to do with them, then look no further than Software Requirements, Third Edition. This usable and
readable text walks you through exactly how to approach common requirements-related scenarios.
The incorporation of multiple stories, case studies, anecdotes, and examples keeps it engaging to
read.’

—Laura Brandenburg, CBAP, Host at Bridging the Gap

"How do you make a good requirements read better? You add content like Karl and Joy did to
address incorporating product vision, tackling agility issues, covering requirements reuse, tackling
packaged and outsourced software, and addressing specific user classes. You could take an outside
Jook inside of requirements to address process and risk issues and go beyond just capturing
functionality.”

—Donald J. Reifer, President, Reifer Consultants LLC

"This new edition keeps pace with the speed of business, both in deepening the foundation of the
second edition and in bringing analysts down-to-earth how-to's for addressing the surge in agile
development, using features to control scope, improving elicitation techniques, and expanding
modeling. Wiegers and Beatty have put together a must-read for anyone in the profession.”

—Keith Ellis, President and CEO, Enfocus Solutions Inc., and author of Business Analysis Benchmark

Software Requirements,
Third Edition

Karl Wiegers and Joy Beatty

== Microsoft

.

I

]

First things first: Setting
requirement priorities

After most of the user requirements for the Chemical Tracking System were identified, the project
manager, Dave, and the business analyst, Lori, met with two of the product champions. Tim represented
the chemist community and Roxanne spoke for the chemical stockroom staff.

Dave said, “Now that we have a general idea of the main capabilities you want, we need to think
about allocating some of the user stories you've identified to the first few iterations. It's important that
we agree on where to start so you can begin getting some value from the system as quickly as possible.
Let’s do a first-cut prioritization on these user stories so we know what's most important to you. Then
we can learn more about exactly what you expect from each of those initial capabilities.”

Tim was puzzled. "Why do you need the requirements prioritized? They're all important, or we
wouldn’t have given them to you.”

Lori, the BA, explained, "We know they're all important, but we need to address the most urgent
requirements in the first few iterations. We're asking you to help us distinguish the requirements
that must be included initially from those that can wait for later iterations. Can you think of certain
functionality that would provide the greatest immediate value to chemists or other user classes?”

“I know that the reports that the Health and Safety Department needs to generate for the
government have to be available soon or the company will get in trouble,” Roxanne pointed out.
"We can use our current inventory system for a few mare months if we have to.”

Tim added, “I promised the online catalog search function to the chemists as a way for this system
to save them time. Can we please start on that right away? It doesn't have to be perfect, but we want to
get access to the catalogs as quickly as we can.”

Tim and Roxanne realized that, because the project couldn't deliver every desired feature at the same
time, it would be better if everyone could agree on the set to implement first. They continued sorting
their user stories into a top-priority category for early implementation and others that could wait a
while.

Few software projects deliver all the capabilities that all stakeholders want by the targeted initial
delivery date. Every project with resource limitations needs to define the relative priorities of the
requested product capabilities. Prioritization, also called requirements triage (Davis 2005), helps reveal
competing goals, resolve conflicts, ;ﬁn for staged or incremental deliveries, control scope creep,

313

3

and make the necessary trade-off decisions. This chapter discusses the importance of prioritizing
requirements, describes several prioritization techniques, and presents a spreadsheet tool for
prioritization analysis based on value, cost, and risk.

Why prioritize requirements?

Grupo A

When customer expectations are high and timelines are short, you need to make sure the product
delivers the most critical or valuable functionality as early as possible. Prioritization is a way to
deal with competing demands for limited resources. Establishing the relative priority of each
product capability lets you plan construction to provide the highest value at the lowest cost.
Because prioritization is relative, you can begin prioritization as soon as you discover your second
requirement.

Sometimes customers don't like to prioritize requirements, thinking that they won't ever get the
ones that are low priority. Well, if you aren't going to get everything you'd like, as is often the case,
you should make sure that you do get the capabilities that are most important to achieving your
business objectives. Sometimes developers don't like to prioritize requirements because it gives the
impression that they can't do it all, The reality is that they can't, at least not all at once. Prioritization
helps the project deliver the maximum business value as quickly as possible within the project
constraints.

Prioritization is a critical strategy for agile or other projects that develop products through a series
of fixed-schedule timeboxes. Project teams can populate their product backlog with user stories,
features, business processes, and defect stories (bugs awaiting correction). Customers prioritize the
stories in the backlog and select which ones they'd like to have implemented in each development
iteration. Developers estimate the effort involved with implementing each story and judge how many
of these stories they can fit into each iteration, based on their empirically demonstrated delivery
capacity as measured by the team's velocity. As new stories are proposed, customers assess their
priorities against the contents of the backlog, thus dynamically adjusting scope for the upcoming
iterations. All projects should do this to ensure that the team is always working on those capabilities
that will get useful software in the users’ hands as soon as possible.

On every project, a project manager must balance the desired project scope against the
constraints of schedule, budget, staff, and quality goals (Wiegers 1996). One way to accomplish
this is to drop—or to defer to a later release—low-priority requirements when new, more essential
requirements are accepted or when other project conditions change. That is, prioritization is a
dynamic and ongoing process. If customers don't distinguish their requirements by importance and
urgency, project managers must make these decisions on their own. Not surprisingly, customers
might not agree with a project manager's priorities; therefore, customers must indicate which
requirements are needed initially and which can wait. Establish priorities early in the project, when
you have more flexibility for achieving a successful project outcome, and revisit them periodically.

It's difficult enough to get any one customer to decide which of his requirements are top
priority. Achieving consensus among multiple customers with diverse expectations is even harder.

314 1711 Requirements development

People naturally have their own interests at heart and aren't eager to compromise their needs for
someone else’s benefit. However, contributing to requirements prioritization is one of the customer's
responsibilities in the customer-development partnership, as was discussed in Chapter 2,
”Req‘uirements from the customer’s perspective.” More than simply defining the sequence of
requirements implementation, discussing priorities helps to clarify the customers’ expectations.

Some prioritization pragmatics

Even a medium-sized project can have dozens of user requirements and hundreds of functional
requirements, too many to classify analytically and consistently. To keep it manageable, choose an
appropriate level of abstraction for the prioritization—features, use cases, user stories, or functiona
requirements. Within a use case, some alternative flows could have a higher priority than others. You
might decide to do an initial prioritization at the feature level and then to prioritize the functional
requirements within certain features separately. This will help you to distinguish the core functionality
from refinements that can be deferred or cut entirely. As was described in Chapter 5, "Establishing the
business requirements,” feature prioritization feeds directly into scope and release planning. Don't
lose sight of the low-priority requirements, although there's no point in analyzing them further just

yet. Their priority might change later, and knowing about them now will help the developers plan for
future enhancements.

Various stakeholders need to participate in prioritization, representing customers, project
sponsors, project management, development, and perhaps other perspectives. You really need one
ultimate decision maker when stakeholders can't agree. A good starting point is for the prioritization
participants to agree upon a set of criteria to use for judging whether one requirement has higher
priority than another. The prioritization can include considerations of customer value, business value,
business or technical risk, cost, difficulty of implementation, time to market, regulatory or policy
compliance, competitive marketplace advantage, and contractual commitments (Gottesdiener 2005).
Alan Davis (2005) indicates that successful prioritization requires an understanding of six issues:

m The needs of the customers
w The relative importance of requirements to the customers
w The timing at which capabilities need to be delivered

® Requirements that serve as predecessors for other requirements and other relationships
among requirements

w Which requirements must be implemented as a group
The cost to satisfy each requirement

Customers place a high priority on those functions that provide the greatest business or usability
benefit. However, after a developer points out the cost, difficulty, technical risk, or trade-offs
associated with a specific requirement, the customers might conclude that it isn't as essential as
they first thought. The developer might also decide to implement certain lower-priority functions

First things first: Setting requirement priorities 315

Grupo C

early on because of their effect on the system's architecture, laying the foundation to implement
future functionality efficiently without major restructuring. Some functionality must have high
priority because it is required to meet regulatory demands for the application. As with all aspects of
requirements development, the overarching business objectives that led to launching the project in

the first place should drive priority decisions.

Certain requirements must be implemented together or in a specific sequence. It makes no sense
to implement a redo edit capability in release 1 but not implement the corresponding undo capability
until some months later, Similarly, suppose you implement just the normal flow of a particular use
case in release 1, deferring the lower-priority alternative flows to some later date. That's fine, but you
must also implement the corresponding exception handlers at the same time you implement each
success flow, Otherwise, you could end up writing code to, say, accept credit card payments without
checking to see if the card is valid, rejecting cards that were reported stolen, or handling other
exceptions. :

Games people play with priorities

316

The knee-jerk response to a request for customers to set priorities sometimes s, ! need all these
features. Just make it happen.” They feel that every requirement should be ranked as high priority,
and they might not recognize that prioritization will_help to ensure the project’s success, Start by
explaining that all things cannot be done simultaneously, so you want to make sure you work on

the right things first. It can be difficult to persuade customers to discuss priorities if they know

that low-priority requirements might never be implemented. One developer told me that it wasn't
politically acceptable in his company to say that a requirement had low priority. Therefore, the
priority categories they adopted were "high,” "super-high,” and "incredibly high." Another developer
who was filling the BA role claimed that priorities weren't necessary: if he wrote something in the SRS,
he intended to build it. That doesn't address the issue of when each piece of functionality gets built,

though.

)

| recently visited one company that had great difficulty getting their projects done on time.
Although management claimed that there would be multiple releases of applications so lower-priority
requirements could wait, in reality each project delivered just a single release. Consequently, the
stakeholders all knew that they only had one shot to get all the functionality they needed. Every
requirement, therefore, became high priority, overloading the team’s capacity to deliver.

In reality, some system capabilities are more essential than others from the perspective of
satisfying business objectives. This becomes apparent during the all-too-common “rapid descoping
phase” late in the project, when nonessentiat features are jettisoned to ensure that the critical
capabilities ship on schedule. At that point, people are clearly making priority decisions, butina
panicked state. Setting priorities early in the project and reassessing them in response to changing
customer preferences, market conditions, and business events lets the team spend time wisely on
high-value activities. Implementing most of a feature before you conclude that it isn't necessary is

wasteful and frustrating.

Requirements development

Grupo D

Some prioritization techniques

'!f .left to their own devices, customers will establish perhaps 85 percent of the requirement i
prlgrlty, 10 percent as medium, and 5 percent as low. This doesn't give the project riana e 5 ashh’gh
flexibility. If all requirements truly are of top priority, your project has a high risk of not bgei r mfufl
successful. fScrub the requirements to eliminate any that aren't essential and to simplify tho:Z t: i,
unnecessarily complex. One study found that nearly two-thirds of the features developed in softa e
systems are rarely or never used (The Standish Group 2009). To encourage customers to acknoleZre
that some requirements have lower priority, the analyst can ask questions such as the following: "

@ |s there some other way to satisfy the need that this requirement addresses?
m What would the consequences be of omitting or deferring this requirement?

What effect would it have on the project’s business objectives if this requirement weren't
implemented for several months? .

u Why might a customer be unhappy if this requirement were deferred to a later release?

m s having this feature worth delaying release of all of the other features with this same priority?

In?portant If you go through a prioritization process and all of the requirements come out
with about the same priority, you really haven't prioritized them at all.

Whe.n you evaluate priorities, look at the connections and interrelationships among requirement
and their alignment with the project's business objectives. The management team on oneq o
Iarge' commercial project displayed impatience over the analyst's insistence on prioritizing the
requirements. The managers pointed out that often they can do without a particular feat?Jre but that

another fc'eature might need to be beefed up to compensate. If they deferred too many requirements
the resulting product wouldn't achieve the projected revenue. ’

. Conflicts arise among stakeholders who are convinced that their requirements are the most
lmporta.nt. As.a .ggjeneral .rulle, members of the favored user classes should get preference in the case of
competing priorities. This is one reason to identify and assess your user classes early in the project

,

On a small project, the stakeholders should be able to agree on requirement priorities informall
Large or contentious projects with many stakeholders demand a more structured approach thaty .
removes some of the emotion, politics, and guesswork from the process. Several analytical and
mathematical techniques have been proposed to assist with requirements prioritization. These
m‘eth.ods involve estimating the relative value and relative cost of each requirement The.z highest
priority requirements are those that provide the largest fraction of the total produc; value gt the
smallest fraction of the total cost (Karlsson and Ryan 1997; Jung 1998). This section discusses several

q P p p 1tizin ts. S tt (0) ded e tec que
techniques eople use 1o rior g requl emen Slm |e I be e
) p f p Vv t 1S

First things first: Setting requirement priorities 317

Grupo E

318

Trap Avoid “decibel prioritization,” in which the loudest voice heard gets top priority, and
“threat prioritization,” in which stakeholders holding the most political power always get
what they demand.

In or out

The simplest of all prioritization methods is to have a group of stakeholders work dowr.1 a list of‘
requirements and make a binary decision: is it in, or is it out? Keep referring to the project’s b.usmess
objectives to make this judgment, paring the list down to the bare minimum needed for the fl.l'S'(
release. Then, when implementation of that release is underway, you can go back to the previously
“out” requirements and go through the process again for the next release.

POp goes the requirement

| once facilitated a workshop that had six stakeholders in the room and four more on the
phone, We had 400 requirements to prioritize. We opted to decide simply if each was in or out,
then figured we'd deal with the "out" ones for the next release. We blocked off seve.r'al h'ours

in this room to grind through the list. One executive stakeholder had the final prioritization
decision when there were conflicts. Shortly into this meeting, he realized that the day was
going to be long and monotonous. He decided to have some fun. Every time the team cut a
requirement, he made an explosion sound, like blowing up the requirement. It was a fun way to

cut scope.

‘Pairwise comparison and rank ordering

People sometimes try to assign a unique priority sequence number to each requirement. Rank
ordering a list of requirements involves making pairwise comparisons between all of them so

you can judge which member of each pair has higher priority. Figure 14-1 in Chapter 14, “.Beyond
functionality,” illustrated the use of a spreadsheet to perform just such a pairwise comparison of
quality attributes; the same strategy could be applied to a set of features, user stories, or any other
set of requirements of the same type. Performing such comparison; becomes unwieldy for more than
a couple of dozen requirements. It could work at the granularity level of features, but not for all the
functional requirements for a system as a whole.

In reality, rank ordering all of the requirements by priority is overkill. You won't be implementing
all of these in individual releases; instead, you'll group them together in batches by release or
development timebox. Grouping }equirements into features, or into small sets of requirements that
have similar priority or that otherwise must be implemented together, is sufficient.

57 Requirements development

Grupo F

Three-level scale —

A common prioritization approach groups requirements into three categories. No matter how you
label them, if you're using three categories they boil down to high, medium, and low priority. Such
prioritization scales are subjective and imprecise. To make the scale useful, the stakeholders must
agree on what each level means in the scale they use.

One way to assess priority is to consider the two dimensions of importance and urgency
(Covey 2004). Every requirement can be considered as being either important to achieving business
objectives or not so important, and as being either urgent or not so urgent. This is a relative
assessment among a set of requirements, not an absolute binary distinction. As Figure 16-1 shows,
these alternatives yield four possible combinations, which you can use to define a priority scale:

@ High-priority requirements are both important (customers need the capability) and urgent
{customers need it in the next release). Alternatively, contractual or compliance obligations
might dictate that a specific requirement must be included, or there might be compelling
business reasons to implement it promptly. If you can wait to implement a requirement in a
later release without adverse consequences, then it is not high priority per this definition.

m Medjum-priority requirements are important (customers need the capability) but not urgent
(they can wait for a later release).

m Low-priority requirements are neither important (customers can live without the capability if
o necessary) nor urgent (customers can wait, perhaps forever).

@ Requirements in the fourth quadrant appear to be urgent to some stakeholder, perhaps for
political reasons, but they really aren't important to achieving the business objectives. Don't
waste your time working on these, because they don't add sufficient value to the product. If
they aren't important, either set them to low priority or scrub them entirely.

Importont Not So Important
High Don't Do
Urgent Priority These!
Medium Low /
Not So Urgent Priority Priority

FIGURE 16-1 Requirements prioritization based on importance and urgency.

Include the priority of each requirement as an attribute of the requirement in the user
requirements documents, the SRS, or the requirements database. Establish a convention so that
the reader knows whether the priority assigned to a high-level requirement is inherited by all its
subordinate requirements or whether every individual functional requirement is to have its own
priority attribute,

First things first: Setting requirement priorities 319

Fim F

320

Sometimes, particularly on a large project, you might want t9 perform prioritizatiqnPl\tere?tl;/iizly.
Have the team rate requirements as high, medium, or low priority. If the number qf higd-‘pnt(;e y
requirements is excessive and you're not convinced that they all_re.ally must. be dﬁllvere :Jn e
next release, perform a second-level partitioning of the hlgh-pnonlty ones'lntot r;je fgrot t,;a.t o
could call them high, higher, and highest if you like, so people don't Ioss s.lght oft e fac i Yy
were originally designated as being important. The requiremen}s'rated" hlgh.est betco.mj\’iyth .
new group of top-priority requirements. Group the "high” an.d higher re.qm‘remefn”s |nt " i)f/1 "
original medium-priority group (Figure 16-2). Taking a hard line on the criterion o r'nu: e the
next release or that release is not shippable” helps keep the team focused on the truly high-p y
capabilities.

R‘eqb“ire‘ments Initial
First Pass
\ Second Pass
G Final
‘Medium

rig . to
FIGURE 16-2 Multipass prioritization keeps the focus on a manageable set of top-priority requirements

When performing a prioritization analysis with the three-level scale, yOLf need b.e aware Zf o
requirement dependencies. You'll run into problems if a high-priority requlr.ement is dependen
another that is ranked lower in priority and hence planned for implementation later on.

MoSCoW

The four cépitalized |etters in the MoSCoW prioritization scheme stand for four possible priority
classifications for the requirements in a set (IIBA 2009):

m Must: The requirement must be satisfied for the solution to be considered a success.

m Should: The requirement is important and should be included in the solution if possible, but
it's not mandatory to success.

Requirements development

Could: It's a desirable capability, but one that could be deferred or eliminated. Implement it
only if time and resources permit,

Won't: This indicates a requirement that will not be implemented at this time but could be
included in a future release.

The MoSCoW scheme changes the three-level scale of high, medium, and low into a four-level
scale. It doesn't offer any rationale for making the decision about how to rate the priority of a given
requirement compared to others. MoSCoW is ambiguous as to timing, particularly when it comes to
the "Won't" rating. “Won't" could mean either “not in the next release” or "not ever.” Such distinctions
must be made clear so that all stakeholders share a common understanding of the implications of a
particular priority rating. The three-level scale described previously, which relies on analysis of the

- two dimensions of importance and urgency, and focuses specifically on the forthcoming release or
development timeboyx, is a crisper way to think about priorities. We don't recommend MoSCoW,

MoSCoW in practice

One consultant described how a client company actually practiced the MoSCoW method on its
projects. "All the action centers around getting an 'M' for almost every feature or requirement
that is captured,” he said. “If something is not an ‘M’ it will almost certainly not get built.
Although the original intent may have been to prioritize, users have long since figured out

to never submit something that does not have an ‘M’ associated with it. Do they understand
the nuanced differences between $, C, and W? | have no idea. But they have figured out the

implications of these rankings. They treat them all the same and understand their meaning to
be 'not happening any time soon’"

N —

$100 Grupo G '

Prioritization is about thoughtfuily allocating limited resources to achieve the maximum benefit from
the investment an organization makes in a project. One way to make prioritization more tangible is to
cast it in terms of an actual resource: money. In this case, it's just play money, but money nonetheless.

Give the prioritization team 100 imaginary dollars to work with. Team members allocate these
dollars to "buy” items that they would like to have implemented from the complete set of candidate
requirements. They weight the higher-priority requirements more heavily by allocating more dollars to
them. If one requirement is three times as important to a stakeholder as another requirement, she would
assign perhaps nine dollars to the first requirement and three dollars to the second. But 100 dollars is all
the prioritizers get~~when they are out of money, nothing else can be implemented, at least not in the
release they are currently focusing on. One approach is to have different participants in the prioritization
process perform their own dollar allocations, then add up the total number of dollars assigned to each
requirement to see which ones collectively come out as having the highest priority.

i First things first: Setting requirement priorities 321

y to get a group of people to think in terms of

2005) points out several ways that participants
REALLY want a particular
he top of the list. In reality,

The hundred-dollar approach is not a bad wa
ority. However, Davis (

he results. For instance, if you really,
requirement, you might give it ail 100 of your dollars to try to float it to t
you'd never accept a system that possessed just that single requirement, though. Nor does this
scheme take into account any concern about the relative amount of effort needed to implement each
of those requirements. If you could get three requirements each valued at $10 for the same effort as
one valued at $15, you're fikely better off with the three. The scheme is based solely on the perceived
value of certain requirements to a particular set of stakeholders, a limitation of many prioritization

allocating resources based on pri
can "game" the process to skew t

techniques.

oritization technique is based on real money, not play money. In Joy Beatty and

Anthony Chen’s (2012) objective chain technique, you assign an es
how much each proposed feature contributes to achieving the project's business objectives. You can

then compare the relative value of features to one another and select which ones to implement first.

Another pri

cost, and risk

S ——
rities through the other relatively informal

| method. A definitive, rigorous way to relate
d Quality Function Deployment,
o undertake the rigor of QFD,

e

Prioritization based on value,

____’_,____#——______________._f——

When the stakeholders can't agree on requirement pric
techniques, it might be useful to apply a more analytica
customer value to proposed product features is with a technique calle
or QFD (Cohen 1995). Few software organizations seem to be willing t
although a structured prioritization method adapted from QFD has proven to be helpful.

ies for a set of

 to help estimate the relative priorit
parative evaluation

Table 16-1 illustrates a spreadsheet mode
requirements. This technique was ranked in the top tier of effectiveness inacom
of 17 requirements prioritization methods (Kukreja et al. 2012). The Microsoft Excel spreadsheet is
available in the companion content for this book. The example in Table 16-1 lists several features
from (what else?) the Chemical Tracking System. This scheme borrows from the QFD concept of
basing customer value on both the benefit provided to the customer if a specific product feature
penalty paid if that feature is absent (Pardee 1996). A feature’s attractiveness is
directly proportional to the value it provides and inversely proportional to its cost and the technical
risk associated with implementing it. All other things being equal, those features with the highest
risk-adjusted value/cost ratio should have the highest priority. This approach distributes a set of
estimated-priorities across a continuum, rather than grouping them into just a few discrete levels.

is present and the

322 =0 Requirements development

timated dollar value that represents «

ABLE 16-1 Sar ple prio itization matrix for the Che cal Track g sySte

Relative weights 2 1
Feature Relati Rel ' , - N
ive | Relative | Total | Value i
beneft | poraty | o | 3% CRglattlve Cost % R_elative Risk % | Priority
1. | Print a material safety | 2 4 >
data sheet. ’ > ' 27 ' 30 :
X] . 122
2. | Query status of a 5 3
vendor order. B 84 2 > ! 0 12
. i 121
3. | Generate a chemical 9 7
stockroom inventory s o ’ 1 c
o . 3 9.1 0.89
4. | See history ofa 5 5
specific chemical " o7 } o o7
container, | 2 N "
5. | Search vendor catalo
519
for a specific chemica?. 8 ® 18 ’ 5 ’ 2 o8
. : 0.83
6. | Maintain a list of 3 9
hazardous chemicals. 15 *7 ’ . * 1 2
. ’ 0.68
7. | Change a pendin
g 4
chemical request.g ’ " " ? . ? o .
. . 0.64
8. | Generate a laborator
(6
inventory report, Y ? “ 2 ¢ 108 } H =R
. . 0.59
9. | Check training 3 4 |
database for v °) 108 ? o
hazardous chemical | : 0'47
training record.
10. | Import chemical 7 4
structures from e He ? 3 ! .
structure drawing | . .
tools.
Totals
5
3 49 155 100.0 | 37 100.0 |33 100.0

Apply this prioritization scheme to discretionar i
e e tion: y requirements, those that aren't obvi
prio. functionsycz,eio:n\:(/jouuclfg_;flncluc?e in this analysis items that implement theoyfr\gzﬁzltystop
e oy ey Produc t; erentiators, or items required for regulatory compliance Afctore
T e o S Tt absolutelly must be included for the product to be rele:;sabfr
et e pric)ritizaﬁo scale the ‘relatlve priorities of the remaining capabilities. Typi "
on process include: e

® The project mana i
ger or business analyst, who |
adjusts prioritizati . » who leads the process, arbitra i
ljusts prioritization data received from the other participants if nece tes conflicts, and
ssary.

w Customer yepresentati
atives, such as product champi
ampions, a pr
owner, who supply the benefit and penalty ratings procuctmanages or procuc

De i
velopment representatives, who provide the cost and risk ratings

First things first: Setting requirement priorities 323

Follow these steps to use this prioritization madel (it's more complicated to explain than to use):

1.

!}J

List in the spreadsheet all the features, use cases, use case flows, user stories, or functional
requirements that you want to prioritize against each other. We've used features in the
example. All the items must be at the same level of abstraction—don't mix functional
requirements with features, use cases, or user stories. Certain features might be logically
linked (you'd implement feature B only if feature A were included) or have dependencies
(feature A must be implemented before feature B). For those, include only the driving feature
in the analysis. This model will work with up to several dozen items before it becomes
unwieldy. If you have more than that, group related items together to create a manageable
list. You can apply the method hierarchically. After you perform an initial prioritization

on, for example, features, you can apply it again within a feature to prioritize its individual
subfeatures or functional requirements.

Have the customer representatives estimate the relative benefit each feature would provide to
the customer or to the business on a scale of 1 to 9. A rating of 1 indicates that no one would
find it useful; 9 means that it would be extremely valuable. These benefit ratings indicate
alignment of the features with the product's business objectives.

Estimate the relative penalty that the customer or the business would suffer if each feature
were not included. Again, use a scale of 1 t0 9. A rating of 1 means that no one will be upset

if it's absent; 9 indicates a serious downside. Requirements with both a low benefit and a

low penalty add cost but little value. Sometimes a feature could have a fairly low value, if

not many customers will use it, but a high penalty if your competitor's product boasts that
feature and the customers expect it to be there-—even if they don't personally plan to use it}
Marketing people sometimes call these "checkbox features”: you need to say you have it, even
if few people really care. When assignihg penalty ratings, consider what might happen if you

do not include the capability:

o Would your product suffer in comparison with other products that do have that capability?
¢ Would there be any legal or contractual consequences?

o Would you be violating some government or industry standard?

» Would users be unable to perform some necessary or expected functions?

« Would it be a lot harder to add that capability later as an enhancement?

o Would problems arise because marketing promised a feature to some customers?

The spreadsheet calculates the total value for each feature as the sum of its benefit and
penalty scores (weighted as described later in the chapter). The spreadsheet sums the values
for all the features and calculates the percentage of the total value that comes from each of
the features (the Value % column). Note that this is not the percentage of total value for the
entire product, just for the set of features you're prioritizing against each other here.

Requirements development

5. H i
ave deVelOpelS estimate the elatWe cost 0‘ | ple nenti g eac ieatu €, agai ona SCale

of1 qU Ck a d easy) to 9 time-co Sur g a d EXpel sive). e Sp EBdS eet will ca Culate
the percer tage o) tl e total COs . P

t that each feature conti bUteS Develo ers estimate tt € Cos

1 gS q]

rat baSed on the teatu 25 CO pleX|ty, the extent of user i teHaCe wo k equ ed t' e
p y

gC ,tleallOUItOit lg g

otentia ab ty to reuse existin Ode est eeded, a ld SO 10|t LA |Ie

teams COUId baSEt ese cost rat| 95 on the nu be of stol y po ts t 'e) Ve ass ar Ed to eac

Y. y 4
user sto (See C apte' 19/ Beyo d equ‘ ements dEUEIOP ent,” fo ore abOUt estimatio
0 ag e p OJECtS-)

&
b

Simi a |y, ave deVeIOpe s rate the elatlve technical (not bUSl eSS) ”Sk associated with eac
eature on a scale of 1 to 9. Tec [of:] Sk S tl e p Obablllty of not gettll g the eature g t
on the lSttyHat 901 1eans you ca poga tinyou Seep~“9 dCateSSe ous
y Yy
conce [e] eas blIlty tl e lack Of necessa expe tise o ltl e tea tl eoru
' Y

ms ab ut , the usi a llla

tools a d tec Olog €s, or concern aboutt e amount of co piex tyl dde wit the

lequ ement, e Sp Eadsl eetw ICa CUIatet e perce tage (o} ﬂ e tOtal Skt at come, 0
S

7. After you've entered all the esti i
imates into the spreadsheet, it will cal jori
each feature by using the following formula: et prioiy ale for
o value %
priority =
cost % + risk %
8.

z'lor;zlly, s?rl: t?e list of features in descending order by calculated priority, the rightmost
mn. The features at the top of the list have the ,
: most favorable balance of val
risk and thus—all other factors bei s
ng equal—should have highest priority. Di i
o al—s g pricrity. Discussions that
s on those features at the top of the list will let you refine that preliminary ranking into a

ority sequence ﬂlat stakel Q de S can agri S actly what the
ee on, even f 0t eve yO e gets ex Yy y

B) .
re|at?vjifla9't|;tthfe be:efflt, penalty, cost, and risk terms are weighted equally. You can change the
eights for the four factors in the top row of the d |
. heet, to reflect th

oy b s o o ot e spreadsheet, to reflect the thought process
priority decisions. In Table 16-1, all benefit rati i

el 2 he comosmens : . enefit ratings are weighted twice as
g penalty ratings, penalty and cost i

e , are weighted the same, and risk h

the weight of the cost and penalty terms. To drop a term out of the model, set its weight to j:ro

When usi i ith prioriti
commnsnt;m:g this sp.)readsheet model with prioritization participants, you might want to hide certain
o at:ppelar in Table 16-1: Total value, Value %, Cost %, and Risk %. These show intermediate
rom the calculations that could just be a di i idi :
. . istraction. Hiding them will let th
on the four rating categories and the calculated priority values. Festomersfocus

First things first: Setting requirement priorities 325

326

Or, we could arm wrastle ~ SP°™

One company that introduced a requirements prioritization procedure based on this
spreadsheet found that it helped a project team to break through an impasse. Several
stakeholders had different opinions about which features were most important on a large
project; the team was deadlocked. The spreadsheet analysis made the priority assessment more
objective and less emotionally charged, enabling the team to agree on some conclusions and

move ahead.

Consultant Johanna Rothman (2000) reported that, | have suggested this spreadsheet to
my clients as a tool for decision-making. Although the ones who tried it have never completely
filled out the spreadsheet, they found the discussion it stimulated extremely helpful in deciding
the relative priorities of the différent requirements.” That is, you can use the framework of
benefit, penalty, cost, and risk to guide discussions about priorities. This is more valuable than «
working completely through the spreadsheet analysis and relying exclusively on the calculated
priority sequence. Because requirements and their priorities can change with time, use the
spreadsheet tool throughout the project to help manage the backlog of work remaining to

be done.

This priority model's usefulness is limited by the team’s ability to estimate the benefit, penalty, cost,
and risk for each item. Therefore, use the calculated priorities only as a guideline. Stakeholders should
review the completed spreadsheet to agree on the ratings and the resulting sorted priority sequence.
If you aren't sure whether you can trust the results, consider calibrating this model for your own use
with a set of implemented requirements from a previous project. Adjust the weighting factors until
the calculated priority sequence correlates well with your after-the-fact evaluation of how important
the requirements in your calibration set really were. This will give you some confidence in using the
tool as a predictive model of how you make priority decisions on your projects.

Trap Don't over-interpret small differences in calculated priority numbers. This
semi-quantitative method is not mathematically rigorous. Group together sets of
requirements that have approximately the same calculated priority numbers.

Different stakeholders often have conflicting ideas about the relative benefit of a specific
requirement or the ‘penalty of omitting it. The prioritization spreadsheet includes a variant that
accommodates input from several user classes or other stakeholder groups. In the Multiple
stakeholders worksheet tab in the downloadable spreadsheet, duplicate the Relative Benefit and
Relative Penaity columns so that you have a set for each stakeholder who's contributing to the
analysis. Then assign a weighting factor to each stakeholder, giving higher weights to favored user
classes than to groups who have less influence on the project’s decisions. Have each stakeholder
representative provide his own benefit and penalty ratings for each feature. The spreadsheet will
incorporate the stakeholder weights when it calculates the final value scores.

Requirements development

This model can also help you to make trade-off decisions when you're evaluating pro d
requirements additions. Add the new requirements to the prioritization spreadsheei Sndpose
how their priorities align with those of the existing requirements baseline so you can ch e
appropriate implementation sequence. . e

You Adon’t always need to use a method this elaborate. Keep your prioritization process as si
.as possible, b.ut no simpler. Strive to move prioritization away from the political and emotionaslImple
into a. forum in which stakeholders can make honest assessments. This will give you a bett harena
building products that deliver the maximum business value with the minimum cost et

Next steps

L] Ree.v?lluate the requirements in your backlog for an upcoming release, using the
definitions in Figure 16-1 to distinguish requirements that truly must be included in that

elease from those that cou d wait cessa es this e (, a gea OT your
e y Do hl ak ou

8 Apply the spreadsheet model illustrated in Table 16-1 to prioritize 10 or 15 features, use
ca?ses, or user stories from a recent project. How well do the calculated priorities co;n a
with the priorities you had determined by some different method? How well do the e
compare with your subjective sense of the proper priorities? ’

® |f the model's priorities don't match what you think is right, analyze which part of the
model isn't giving sensible results. Try using different weighting factors for benefit
penalty, cost, and risk. Adjust the model until it provides results consistent with wh’at ou
expect. Otherwise, you can't trust its predictive capability. ’

u After you've calibrated the prioritization model, apply it to a new project. Incorporate
the calculated priorities into the decision-making process. See whether this yields results

M g thos
at the sta elodes ld ore satis tha ose f om their peVOUS oritizatio

» Try one new prioritization technique today that you have not used before. For example, if
you use MoSCoW already, try using the three-level method to see how it compares.

mes b First things first: Setting requirement priorities 327

